// -*-C++-*- #version 120 // Atmospheric scattering shader for flightgear // Written by Lauri Peltonen (Zan) // Implementation of O'Neil's algorithm // Ground haze layer added by Thorsten Renk // aurora and ice haze scattering Thorsten Renk 2016 varying vec3 rayleigh; varying vec3 mie; varying vec3 eye; varying vec3 hazeColor; varying vec3 viewVector; varying float ct; varying float cphi; varying float delta_z; varying float alt; varying float earthShade; uniform float overcast; uniform float saturation; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float cloud_self_shading; uniform float horizon_roughness; uniform float ice_hex_col; uniform float ice_hex_sheet; uniform float parhelic; uniform float ring; uniform float aurora_strength; uniform float aurora_hsize; uniform float aurora_vsize; uniform float aurora_ray_factor; uniform float aurora_penetration_factor; uniform float landing_light1_offset; uniform float landing_light2_offset; uniform float landing_light3_offset; uniform float osg_SimulationTime; uniform int use_searchlight; uniform int use_landing_light; uniform int use_alt_landing_light; const float EarthRadius = 5800000.0; float Noise2D(in vec2 coord, in float wavelength); float fog_backscatter(in float avisibility); vec3 searchlight(); vec3 landing_light(in float offset, in float offsetv); vec3 filter_combined (in vec3 color) ; float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } float miePhase(in float cosTheta, in float g) { float g2 = g*g; float a = 1.5 * (1.0 - g2); float b = (2.0 + g2); float c = 1.0 + cosTheta*cosTheta; float d = pow(1.0 + g2 - 2.0 * g * cosTheta, 0.6667); return (a*c) / (b*d); } float rayleighPhase(in float cosTheta) { //return 1.5 * (1.0 + cosTheta*cosTheta); return 1.5 * (2.0 + 0.5*cosTheta*cosTheta); } void main() { vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); float cosTheta = dot(normalize(eye), gl_LightSource[0].position.xyz); // some geometry vec3 nView = normalize(viewVector); vec3 lightFull = normalize((gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz); float calpha = dot(lightFull, nView); float cbeta = dot ( normalize(lightFull.xy), normalize(nView.xy)); float costheta = ct; // some noise float hNoise_03 = Noise2D(vec2(0.0,cphi), 0.3); float hNoiseAurora = Noise2D(vec2(0.001 * osg_SimulationTime,cphi + nView.x + nView.y), 0.07) * 0.2 * aurora_ray_factor; // position of the horizon line float lAltitude = alt + delta_z; float radiusEye = (EarthRadius + alt); float radiusLayer = (EarthRadius + lAltitude); float cthorizon; float ctterrain; //float ctsd; float SkydomeRadius = (EarthRadius + 100000.0); float rEye = (EarthRadius + alt); if (radiusEye > radiusLayer) cthorizon = -sqrt(radiusEye * radiusEye - radiusLayer * radiusLayer)/radiusEye; else cthorizon = sqrt(radiusLayer * radiusLayer - radiusEye * radiusEye)/radiusLayer; //if (rEye > SkydomeRadius) ctsd = -sqrt(rEye * rEye - SkydomeRadius * SkydomeRadius)/rEye; //else ctsd = 0.0;//sqrt(SkydomeRadius * SkydomeRadius - rEye * rEye)/SkydomeRadius; ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye; vec3 color = rayleigh * rayleighPhase(cosTheta); color += mie * miePhase(cosTheta, -0.8); vec3 black = vec3(0.0,0.0,0.0); float ovc = overcast; float sat = 1.0 - ((1.0 - saturation) * 2.0); if (sat < 0.3) sat = 0.3; if (color.r > 0.58) color.r = 1.0 - exp(-1.5 * color.r); if (color.g > 0.58) color.g = 1.0 - exp(-1.5 * color.g); if (color.b > 0.58) color.b = 1.0 - exp(-1.5 * color.b); // Aurora Borealis / Australis vec3 direction = vec3 (1.0, 0.0, 0.0); float hArg = dot(nView, direction); float aurora_vEdge = 0.2 - 0.6 * aurora_vsize * (1.0 - 0.8* aurora_ray_factor); float aurora_vArg = costheta + hNoiseAurora; float aurora_v = smoothstep(aurora_vEdge , 0.2 , costheta + hNoiseAurora) * (1.0- smoothstep(0.3, 0.3 + aurora_vsize, aurora_vArg)); aurora_v *= (1.0 + 5.0 * aurora_ray_factor * (1.0 -smoothstep(aurora_vEdge, 0.3, aurora_vArg))); float aurora_h = smoothstep(1.0 - aurora_hsize, 1.0, hArg); float aurora_time = 0.01 * osg_SimulationTime; vec3 auroraBaseColor = vec3 (0.0, 0.2, 0.1); vec3 auroraFringeColor = vec3 (0.4, 0.15, 0.2); float fringe_factor = 1.0 - smoothstep(aurora_vEdge, aurora_vEdge + 0.08, aurora_vArg); fringe_factor *= aurora_strength * aurora_penetration_factor; auroraBaseColor = mix(auroraBaseColor, auroraFringeColor, fringe_factor ); float aurora_ray = mix(1.0, Noise2D(vec2(cbeta, 0.01 * aurora_time), 0.001), aurora_ray_factor); float aurora_visible_strength = 0.3 + 0.7 * Noise2D(vec2(costheta + aurora_time, 0.5 * nView.x + 0.3 * nView.y + aurora_time), 0.1) ; aurora_visible_strength *= aurora_ray; float aurora_fade_in = 1.0 - smoothstep(0.1, 0.2, length(color.rgb)); color.rgb += auroraBaseColor * aurora_v * aurora_h * aurora_fade_in * aurora_visible_strength * aurora_strength; // fog computations for a ground haze layer, extending from zero to lAltitude float transmission; float vAltitude; float delta_zv; float vis = min(visibility, avisibility); if (delta_z > 0.0) // we're inside the layer { if (costheta>0.0 + ctterrain) // looking up, view ray intersecting upper layer edge { transmission = exp(-min((delta_z/max(costheta,0.1)),25000.0)/vis); //transmission = 1.0; vAltitude = min(vis * costheta, delta_z); delta_zv = delta_z - vAltitude; } else // looking down, view range intersecting terrain (which may not be drawn) { transmission = exp(alt/vis/costheta); vAltitude = min(-vis * costheta, alt); delta_zv = delta_z + vAltitude; } } else // we see the layer from above { if (costheta < 0.0 + cthorizon) { transmission = exp(-min(lAltitude/abs(costheta),25000.0)/vis); transmission = transmission * exp(-alt/avisibility/abs(costheta)); transmission = 1.0 - (1.0 - transmission) * smoothstep(0+cthorizon, -0.02+cthorizon, costheta); vAltitude = min(lAltitude, -vis * costheta); delta_zv = vAltitude; } else { transmission = 1.0; delta_zv = 0.0; } } // combined intensity reduction by cloud shading and fog self-shading, corrected for Weber-Fechner perception law float eqColorFactor = 1.0 - 0.1 * delta_zv/vis - (1.0 - min(scattering,cloud_self_shading)); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; // postprocessing of haze color vec3 hColor = hazeColor; // high altitude desaturation float intensity = length(hColor); hColor = intensity * normalize (mix(hColor, intensity * vec3 (1.0,1.0,1.0), 0.7 * smoothstep(5000.0, 50000.0, alt))); hColor = clamp(hColor,0.0,1.0); // blue hue hColor.x = 0.83 * hColor.x; hColor.y = 0.9 * hColor.y; // further blueshift when in shadow, either cloud shadow, or self-shadow or Earth shadow, dependent on indirect // light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hColor); vec3 oColor = hColor; oColor = intensity * normalize(mix(oColor, shadedFogColor, (smoothstep(0.1,1.0,ovc)))); // ice crystal halo float sun_altitude = dot (lightFull, vec3 (0.0, 0.0, 1.0)); float view_altitude = dot(nView, vec3 (0.0, 0.0, 1.0)); //float halo_ring_enhancement = smoothstep (0.88, 0.927, calpha) * (1.0 - smoothstep(0.927, 0.98, calpha)); float halo_ring_enhancement = smoothstep (0.88, 0.927, calpha) * (1.0 - smoothstep(0.927, 0.94, calpha)); halo_ring_enhancement *= halo_ring_enhancement; halo_ring_enhancement *= ring; // parhelic circle float parhelic_circle_enhancement = 0.3 * smoothstep (sun_altitude-0.01, sun_altitude, view_altitude) * (1.0 - smoothstep(sun_altitude, sun_altitude+ 0.01, view_altitude)); parhelic_circle_enhancement += 0.8 * smoothstep (sun_altitude-0.08, sun_altitude, view_altitude) * (1.0 - smoothstep(sun_altitude, sun_altitude+ 0.08, view_altitude)); parhelic_circle_enhancement *= parhelic * (0.2 + 0.8 * smoothstep(0.5, 1.0, cbeta)); // sundogs float side_sun_enhancement = smoothstep (sun_altitude-0.03, sun_altitude, view_altitude) * (1.0 - smoothstep(sun_altitude, sun_altitude+ 0.03, view_altitude)); side_sun_enhancement *= halo_ring_enhancement * halo_ring_enhancement * ice_hex_sheet; // pillar float pillar_enhancement = smoothstep (sun_altitude-0.1, sun_altitude, view_altitude) * (1.0 - smoothstep(sun_altitude, sun_altitude+ 0.22, view_altitude)); float beta_thickness = 0.6 * smoothstep(0.999, 1.0, cbeta); beta_thickness += 0.8 * smoothstep(0.99998, 1.0, cbeta); pillar_enhancement *= beta_thickness * beta_thickness * smoothstep(0.99, 1.0, calpha) * ice_hex_col; float scattering_enhancements = 0.25 * halo_ring_enhancement * ovc; scattering_enhancements += side_sun_enhancement *0.4 * (1.0 - smoothstep(0.6, 0.95, transmission)); scattering_enhancements += pillar_enhancement *0.25 * (1.0 - smoothstep(0.7, 1.0, transmission)); scattering_enhancements += parhelic_circle_enhancement * 0.2 * (1.0 - smoothstep(0.7, 1.0, transmission)); color.rgb += vec3(1.0, 1.0, 1.0) * (5.0-4.0* earthShade) * scattering_enhancements * hazeColor; oColor = clamp(oColor,0.0,1.0); color = ovc * mix(color, oColor * earthShade ,smoothstep(-0.1+ctterrain, 0.0+ctterrain, ct)) + (1.0-ovc) * color; hColor = intensity * normalize(mix(hColor, 1.5 * shadedFogColor, 1.0 -smoothstep(0.25, fade_out,earthShade) )); hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,eqColorFactor)))); hColor = hColor * earthShade; // accounting for overcast and saturation color = sat * color + (1.0 - sat) * mix(color, black, smoothstep(0.4+cthorizon,0.2+cthorizon,ct)); // the terrain below the horizon gets drawn in one optical thickness vec3 terrainHazeColor = eqColorFactor * hColor; // determine a visibility-dependent angle for how smoothly the haze blends over the skydome float hazeBlendAngle = max(0.01,1000.0/avisibility + 0.3 * (1.0 - smoothstep(5000.0, 30000.0, avisibility))); float altFactor = smoothstep(-300.0, 0.0, delta_z); float altFactor2 = 0.2 + 0.8 * smoothstep(-3000.0, 0.0, delta_z); hazeBlendAngle = hazeBlendAngle + 0.1 * altFactor; hazeBlendAngle = hazeBlendAngle + (1.0-horizon_roughness) * altFactor2 * 0.1 * hNoise_03; terrainHazeColor = clamp(terrainHazeColor,0.0,1.0); // don't let the light fade out too rapidly float lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); // this is for the bare Rayleigh and Mie sky, highly altitude dependent color.rgb = max(color.rgb, minLight.rgb * (1.0- min(alt/100000.0,1.0)) * (1.0 - costheta)); // this is for the terrain drawn terrainHazeColor = max(terrainHazeColor.rgb, minLight.rgb); color = mix(color, terrainHazeColor ,smoothstep(hazeBlendAngle + ctterrain, 0.0+ctterrain, ct)); // add the brightening of fog by lights vec3 secondary_light = vec3 (0.0,0.0,0.0); if (use_searchlight == 1) { secondary_light.rgb += searchlight(); } if (use_landing_light == 1) { secondary_light += landing_light(landing_light1_offset, landing_light3_offset); } if (use_alt_landing_light == 1) { secondary_light += landing_light(landing_light2_offset, landing_light3_offset); } // mix fog the skydome with the right amount of haze hColor *= eqColorFactor; hColor = max(hColor.rgb, minLight.rgb); hColor = clamp(hColor,0.0,1.0); color = mix(hColor+secondary_light * fog_backscatter(avisibility),color, transmission); // blur the upper skydome edge when we're outside the atmosphere float asf = smoothstep (75000.0, 90000.0, alt); float asf_corr = clamp((alt-115000.0)/45000.0, 0.0,1.0) * 0.08; color *= (1.0 - smoothstep( -0.12 -asf_corr, -0.06 - asf_corr, costheta) * asf); color = filter_combined(color); gl_FragColor = vec4(color, 1.0); gl_FragDepth = 0.1; }