// FRAGMENT SHADER // This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // ©Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // ©Emilian Huminiuc and Vivian Meazza // Optimisation - 2012-5-05 // Based on ideas by Thorsten Renk // ©Emilian Huminiuc and Vivian Meazza #version 120 varying vec2 TopoUV; varying vec3 WorldPos; varying vec3 lightdir; varying vec3 normal; varying vec3 viewerdir; varying vec4 waterTex1; //moving texcoords varying vec4 waterTex2; //moving texcoords uniform sampler2D perlin_normalmap; uniform sampler2D sea_foam; uniform sampler2D topo_map; uniform sampler2D water_dudvmap; uniform sampler2D water_normalmap; uniform sampler2D water_reflection; uniform sampler2D water_reflection_grey; uniform sampler3D Noise; uniform float CloudCover0; uniform float CloudCover1; uniform float CloudCover2; uniform float CloudCover3; uniform float CloudCover4; uniform float Overcast; uniform float WindE; uniform float WindN; uniform float osg_SimulationTime; uniform float saturation; uniform int Status; uniform float WaveAmp; uniform float WaveAngle; uniform float WaveDAngle; uniform float WaveFactor; uniform float WaveFreq; uniform float WaveSharp; uniform float normalmap_dds; ////fog "include" ///// uniform int fogType; vec3 fog_Func(vec3 color, int type); ////////////////////// const vec4 AllOnes = vec4(1.0); const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005); const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02); const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25); const float water_shininess = 240.0; /////// functions ///////// void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } // wave functions /////////////////////// struct Wave { float freq; // 2*PI / wavelength float amp; // amplitude float phase; // speed * 2*PI / wavelength vec2 dir; }; Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)); Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)); Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)); Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)); float evaluateWave(in Wave w, vec2 pos, float t) { return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase); } // derivative of wave function float evaluateWaveDeriv(Wave w, vec2 pos, float t) { return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase); } // sharp wave functions float evaluateWaveSharp(Wave w, vec2 pos, float t, float k) { return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k); } float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k) { return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1.0) * cos( dot(w.dir, pos)*w.freq + t*w.phase); } void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, out float ddy) { mat4 RotationMatrix; float deriv; vec4 P = waterTex1 * 1024.0; rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix); P *= RotationMatrix; P.y += evaluateWave(wave0, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ); ddx = deriv * wave0.dir.x; ddy = deriv * wave0.dir.y; P.y += evaluateWave(wave1, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime); ddx += deriv * wave1.dir.x; ddy += deriv * wave1.dir.y; P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave2.dir.x; ddy += deriv * wave2.dir.y; P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave3.dir.x; ddy += deriv * wave3.dir.y; } void main(void) { mat4 RotationMatrix; // compute direction to viewer vec3 E = normalize(viewerdir); // compute direction to light source vec3 L = normalize(lightdir); // half vector vec3 H = normalize(L + E); vec3 Normal = normalize(normal); // approximate cloud cover float cover = 0.0; //bool Status = true; // try some aliasing fix for low angles // float viewAngle = smoothstep(0.0,0.5,abs(dot(E,Normal))); // Global bathymetry texture vec4 topoTexel = texture2D(topo_map, TopoUV); vec4 mixNoise = texture3D(Noise, WorldPos.xyz * 0.00005); vec4 mixNoise1 = texture3D(Noise, WorldPos.xyz * 0.00008); float mixNoiseFactor = mixNoise.r * mixNoise.g * mixNoise.b; float mixNoise1Factor = mixNoise1.r * mixNoise1.g * mixNoise1.b; mixNoiseFactor *= 300.0; mixNoise1Factor *= 300.0; mixNoiseFactor = 0.8 + 0.2 * smoothstep(0.0,1.0, mixNoiseFactor)* smoothstep(0.0,1.0, mixNoise1Factor); float floorMixFactor = smoothstep(0.3, 0.985, topoTexel.a * mixNoiseFactor); vec3 floorColour = mix(topoTexel.rgb, mixNoise.rgb * mixNoise1.rgb, 0.3); float windFloorFactor = 1.0 + 0.5 * smoothstep(0.8, 0.985, topoTexel.a); float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt float windFloorEffect = windEffect * windFloorFactor; float windScale = 15.0/(3.0 + windEffect); //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windFloorEffect); mixFactor = clamp(mixFactor, 0.3, 0.95); // sine waves // // Test data // float WaveFreq =1.0; // float WaveAmp = 1000.0; // float WaveSharp = 10.0; vec4 ddxVec = vec4(0.0); vec4 ddyVec = vec4(0.0); float ddx = 0.0, ddy = 0.0; float ddx1 = 0.0, ddy1 = 0.0; float ddx2 = 0.0, ddy2 = 0.0; float ddx3 = 0.0, ddy3 = 0.0; float waveamp; float angle = 0.0; float WaveAmpFromDepth = WaveAmp * windFloorFactor; float phaseFloorFactor = 1.0 - 0.2 * smoothstep(0.8, 0.9, topoTexel.a); wave0.freq = WaveFreq; // * (smoothstep(0.8, 0.9, topoTexel.a)*1.5 + 0.25); wave0.amp = WaveAmpFromDepth; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))); wave0.phase *= phaseFloorFactor; angle -= 45.0; wave1.freq = WaveFreq * 2.0 ; wave1.amp = WaveAmpFromDepth * 1.25; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))); wave1.phase *= phaseFloorFactor; angle += 30.0; wave2.freq = WaveFreq * 3.5; wave2.amp = WaveAmpFromDepth * 0.75; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))); wave2.phase *= phaseFloorFactor; angle -= 50.0; wave3.freq = WaveFreq * 3.0 ; wave3.amp = WaveAmpFromDepth * 0.75; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))); wave3.phase *= phaseFloorFactor; // sum waves ddx = 0.0, ddy = 0.0; sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy); ddx1 = 0.0, ddy1 = 0.0; sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1); //reset the waves angle = 0.0; waveamp = WaveAmpFromDepth * 0.75; wave0.freq = WaveFreq ; wave0.amp = waveamp; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 20.0; wave1.freq = WaveFreq * 2.0 ; wave1.amp = waveamp * 1.25; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle += 35.0; wave2.freq = WaveFreq * 3.5; wave2.amp = waveamp * 0.75; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45.0; wave3.freq = WaveFreq * 3.0 ; wave3.amp = waveamp * 0.75; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))); // sum waves ddx2 = 0.0, ddy2 = 0.0; sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2); ddx3 = 0.0, ddy3 = 0.0; sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3); ddxVec = vec4(ddx, ddx1, ddx2, ddx3); ddyVec = vec4(ddy, ddy1, ddy2, ddy3); float ddxSum = dot(ddxVec, AllOnes); float ddySum = dot(ddyVec, AllOnes); if (Status == 1){ cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4); } else { // hack to allow for Overcast not to be set by Local Weather if (Overcast == 0.0){ cover = 5.0; } else { cover = Overcast * 5.0; } } vec4 viewt = vec4(-E, 0.0) * 0.6; vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0; vec2 uvAnimSca2 = (waterTex1 + disdis * sca2).st * windScale; //normalmaps vec4 nmap = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0; vec4 nmap1 = texture2D(perlin_normalmap, uvAnimSca2) * 2.0 - 1.0; rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix); vec2 uvAnimTscale = (waterTex2 * RotationMatrix * tscale).st * windScale; nmap += texture2D(water_normalmap, uvAnimTscale) * 2.0 - 1.0; nmap1 += texture2D(perlin_normalmap, uvAnimTscale) * 2.0 - 1.0; nmap *= windEffect_low; nmap1 *= windEffect_low; // mix water and noise, modulated by factor vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness); vNorm.r += ddxSum; if (normalmap_dds > 0) vNorm = -vNorm; //dds fix //load reflection vec4 tmp = vec4(lightdir, 0.0); vec2 refTexUV = (tmp + waterTex1).st * 32.0; vec4 refTex = texture2D(water_reflection, refTexUV) ; vec4 refTexGrey = texture2D(water_reflection_grey, refTexUV) ; vec4 refl = vec4(0.0,0.0,0.0,1.0) ; // Test data // cover = 0; if(cover >= 1.5){ refl.rgb = normalize(refTex).rgb; } else { refl.rgb = normalize(refTexGrey).rgb; refl.r *= (0.75 + 0.15 * cover ); refl.g *= (0.80 + 0.15 * cover ); refl.b *= (0.875 + 0.125 * cover); } // refl.rgb = mix(refl.rgb, floorColour, 0.99 * floorMixFactor); vec4 N0 = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0; vec4 N1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0; N0 += texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0; N1 += texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0; rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix); vec2 uvAnimTscaleSca2 = (waterTex2 * RotationMatrix * (tscale + sca2)).st * windScale; N0 += texture2D(water_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0; N1 += texture2D(perlin_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0; rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix); N0 += texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0; N1 += texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0; N0 *= windEffect_low; N1 *= windEffect_low; N0.r += ddxSum; N0.g += ddySum; Normal = normalize(mix(Normal + N0.rgb, Normal + N1.rgb, mixFactor) * waveRoughness); if (normalmap_dds > 0) Normal = -Normal; //dds fix float NdotH = max(0.0, dot(Normal, H)); vec3 specular_color = vec3(gl_LightSource[0].diffuse) * pow(NdotH, water_shininess) * 6.0; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3 ; //calculate fresnel float vNormDotViewT = dot(vNorm, viewt); vec4 invfres = vec4( vNormDotViewT); vec4 fres = vec4(1.0) + invfres; refl *= fres; refl.rgb = mix(refl.rgb, floorColour, floorMixFactor); //calculate final colour vec4 ambient_light = gl_LightSource[0].diffuse; vec4 finalColor; finalColor = refl + step(1.5, cover) * specular; //add foam vec4 foam_texel = texture2D(sea_foam, (waterTex2 * tscale).st * 50.0); float foamSlope = 0.1 + 0.1 * windScale; float waveSlope1 = Normal.g * windFloorFactor * 0.65; float waveSlope2 = vNorm.r * windFloorFactor * 0.3; float waveSlope = waveSlope1 + waveSlope2; finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(7.0, 8.0, windFloorEffect) * step(foamSlope, waveSlope) * smoothstep(0.01, 0.50, waveSlope)) ; finalColor *= ambient_light ; finalColor.rgb = fog_Func(finalColor.rgb, fogType) ; gl_FragColor = finalColor ; }