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Prerequisites

This manual assumes familiarity with the C programming language and requires
programming experience, including advanced concepts such as pointers and bit
manipulation, data structures, memory management and (possibly) the ability
to build programs from source. If you need to brush up on your C knowledge,
we recommend checking out some of the following resources first, some of which
may only take a couple of minutes to review/work through to get up to speed:

1. http://www.slideshare.net/petdance/just-enough-c-for-open-source-programmers

2. http://www.slideshare.net/amraldo/introduction-to-c-programming-7898353

3. http://www.slideshare.net/olvemaudal/deep-c

4. http://mindview.net/CDs/ThinkingInC/beta3

5. http://www.physics.drexel.edu/courses/Comp_Phys/General/C_basics/

6. http://www.learnconline.com/2010/03/introduction.html

7. http://publications.gbdirect.co.uk/c_book/

8. http://c-faq.com/index.html

For web-based programming experiments, you may want to check out some
online compilers, such as:

1. http://www.learn-c.org/

2. http://codepad.org/

3. http://ideone.com

At least basic knowledge of Nasal (or a similar language like JavaScript) will
be helpful, i.e. understanding the basic syntax (for the parsing section) will go
a long way, for example:

1 # declare a function with a named argument
var hello = func(name) {

3 print(”Hello ”, name);
}
hello(”world”); # call the function with one argument

If you are connected to the internet, you can learn more about the Nasal
language itself by visiting these links:

1. http://plausible.org/nasal/sample.nas (example of syntax and us-
age)

2. http://plausible.org/nasal/lib.html (documentation of library func-
tions)
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3. http://wiki.flightgear.org/Nasal – see some more specific articles
like these to get started:

i. http://wiki.flightgear.org/Nasal_Conditionals

ii. http://wiki.flightgear.org/Nasal_Variables

iii. http://wiki.flightgear.org/Nasal_Loops

iv. http://wiki.flightgear.org/Nasal_Operators

1 Introduction to Nasal

Nasal is an Open-Source, Mult-Platform, Small, and Easily Embeddable Script-
ing Language designed by Andy Ross and released under the GNU LGPL li-
cense. It originally started out as “NASL” (acronym for Not Another Scripting
Language) but was renamed due to a naming conflict with another, unrelated
scripting language. Nasal was specifically designed to be used as an exten-
sion language in other programs and to be embedded by developers into their
own programs, without any platform bloat. It supports various programming
paradigms, such as functional programming, procedural, and object oriented
programming (OOP), and runs on both 32bit and 64 bit platforms. It is writ-
ten in ANSI C99 and its source code is small, compact, and completely self-
contained, with a handwritten lexer and parser and no external dependencies,
other than the standard C library (though it has several library bindings that
can be optionally compiled). It’s main usage has been in FlightGear (where it
got first added in 2003), an open-source flight simulator, and in AlgoScore, an
algorithmic music composition software, where Nasal is used to write the algo-
rithms. Nasal can also be run standalone, through a command-line “interactive”
REPL (read-eval-print-loop) interpreter using the GNU readline library.

Nasal is available from several different sources. Ross has a repository on
GitHub (https://github.com/andyross/nasal), but he has said that he con-
siders the SimGear sources to be the standard version (http://gitorious.
org/fg/simgear/trees/next/simgear/nasal – SimGear is a component in
FlightGear, it currently does not include a standalone interpreter). AlgoScore
also has Nasal in it’s source tree (http://svn.gna.org/viewcvs/algoscore/
trunk/src/nasal/), but it has not been updated in a while and SimGear’s is
more actively maintained. Most source code references made here are referring
to Ross’s GitHub repository for now.

Nasal combines the advantages of a dynamically-typed scripting language
with a clean syntax close to C and Javascript – Nasal being inspired by EC-
MAScript – and it has many modern features like multiple assignment expres-
sions and named function arguments, as well as unique ones like access to names-
paces in the native “hash” datatype. It supports object-oriented programming
through hashes that can contain a mutable “parents” vector used in imple-
menting multiple-inheritance. It has automatic memory management through
a garbage collector (GC) and is designed to be minimally threadsafe, without
requiring a global interpreter lock (GIL). Nasal as a language is very flexible,
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and both its integration into FlightGear and the variety of libraries that have
been created in Nasal attest to this (e.g. see FG/src/Scripting/FGNasalSys.cxx
and the Andy/lib/ and Andy/contrib/Ampere/ directories for an illustration of
this flexibility).

For more on Nasal syntax and features, see http://plausible.org/nasal

and http://wiki.flightgear.org/Nasal_scripting_language. Reading Andy’s
design document is also recommended, as many of the things that are alluded
to will be explained here: http://plausible.org/nasal/doc.html.

2 Maintaining this Manual

This manual is very far from being complete, or up-to-date. If you want to
help out by contributing, please contact Philosopher or Hooray (the authors)
on the forum. It is written in LaTeX but shouldn’t be difficult to pick up on
sight. Both grammar/wording edits and contributions/revisions of topics will
be welcome!

This manual is hosted on both writeLaTeX.com and in FGData.

3 Document layout

This document is focused on the C/C++ sides of working with Nasal. There
are many great tutorials out there for Nasal programming itself, please see the
links under “Prerequisites”.

First described are some of the building blocks of the source code – basic
things that are used throughout and need to be understood. Next the types
of variables and their usage are detailed – manuipulating variables is essential
to creating a usable API. From those building blocks, methods for creating an
API are described for those needing to integrate Nasal into a existing program.
CPPBind – an extension found in SimGear – is the focus of the next chapter:
it allows easy manipulation of Nasal types from C++, including automatic
conversions using templates.

For those who are interested, there are many parts describing different core
pieces of nasal. Steps of parsing: lexing, block & precedence parsing, and
code generation. Code running in the virtual machine – this provides insight
into many of the actual workings of the Nasal code that programmers write.
There’s also an article on Nasal’s garbage collection and some of the problems
FlightGear has faced regarding that. Efforts to improve the GC are welcome!
Error and exception handling is the last topic, including how to recognize and
handle errors while programming in C.

Cool examples of work done on improving Nasal or that exemplifies the con-
cepts described above are found at the end of the document. This includes
ongoing work on “introspection” (enhancing the ability of Nasal to debug it-
self and complementing the existing metaprogramming capabilities), potential
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“Nasal maintenance” tasks, and descriptions of the existing bindings for PCRE,
SQLite, Cairo/GTK, FlightGear’s Canvas and more.

Part I

Creating an API: useful
knowledge

4 Globals and Contexts

A Nasal context is basically the “housekeeper” struct that manages data for a
single instance of an interpreter. All interpreter-specific stuff is managed via
the context, which is why you have pointers and data such as:

1. the execution-frame stack, its current top

2. the operand stack

3. various GC related data structures (marking, free pool memory elements)

4. error handling (via setjmp/longjmp/jmp buf)

5. support for sub contexts, i.e. Nasal scripts calling other scripts, calling
other scripts via naCall() etc

Look at some of the callbacks - the only way to know what data to operate
on is by having a handle to the context, which in turn contains handles to the
relevant program (opcodes), operand stack, frames, GC stuff and so on. Each
variable that gets created via naNew*() needs to be tied to a context for GC’ing.

All extension functions operate via naContexts – so the context is basically
the “instance” of the interpreter. Also, if we have multiple contexts around,
for example using threading, naContexts are a way to keep things separate,
even though we may have multiple threads running their own Nasal interpreter
instance.

4.1 Using Nasal Sub Contexts

Subcontexts are needed whenever an extension function is called which in turn
invokes another Nasal function as a callback. The most common use in Nasal
is using the call() library function in code.c to explicitly call a function, while
specifying the complete environment. Using the call() function is also the only
way to do exception handling in Nasal.

Additional examples on subcontext API usage can be found in the sort()
implementation (sort cmp in lib.c), where the extension function executes a
callback that is passed via a naRef argument. Another example is to be found
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in the readline bindings (readline.c), where the completion function can be pro-
vided as a Nasal callback. Also, the SQLite bindings (see sqlitelib.c) provide
another example on using Nasal sub contexts, where the run query() extension
function provides support for running a Nasal-space callback.

Sub contexts are usually used to issue a naCall() from inside a Nasal exten-
sion function. After use, sub contexts should be freed using naFreeContext().

5 Variables

The main object type in Nasal is naRef and it either holds a reference to a Nasal
object or it stores a number. A naRef is a union between a double-precision
floating-point number and a pointer to another data type. Designating it as a
pointer is done by setting a bitmask in the top bits of the double, which includes
the whole exponent, sign, and a couple more bits in the mantissa. Setting the
bits in this way makes the double a NaN (Not a Number, an invalid number)
that will usually cause a floating-point error if used, since it is a singalling NaN
(SNaN) versus a quiet NaN (QNaN). Depending on the system configuration
(processor and OS), setting the bits has to be accomplished in different ways.
For supported 64-bit systems/OS combinations, where all of the data in the
pointer lies in the bottom 48 bits, the bits above that are set with a bitmask
simple. For 32-bit systems, the layout in endianness-dependent (since it has to
be in the “top” bits) and a magic number (see the REFMAGIC macro) is stored
in the top bits, again making it a NaN:

1 /∗ On supported 64 bit platforms (those where all memory returned from
∗ naAlloc() is guaranteed to lie between 0 and 2ˆ48−1) we union the

3 ∗ double with the pointer, and use fancy tricks (see data.h) to make
∗ sure all pointers are stored as NaNs. 32 bit layouts (and 64 bit
∗ platforms where we haven’t tested the trick above) need

6 ∗ endianness−dependent ordering to make sure that the reftag lies in
∗ the top bits of the double ∗/

9 #if defined(NASAL LE)
typedef struct { naPtr ptr; int reftag; } naRefPart;
#elif defined(NASAL BE)

12 typedef struct { int reftag; naPtr ptr; } naRefPart;
#endif

15 #if defined(NASAL NAN64)
typedef union { double num; void∗ ptr; } naRef;
#else

18 typedef union { double num; naRefPart ref; } naRef;
#endif

If that is a bit confusing to understand, consider the following picture (for
64-bit systems):
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Pointer’s bottom 48 bits (data) bitmask

Full pointer – all bits ≥ 48 must not be set

}
64-bit
Pointer

Fraction Exponent ±

IEEE 754 double-precision floating point number

}
Double
Numeric

With this layout, we have a pointer that has 48 bits of data in its lower half
overlaid on top of a double whose exponent, sign, and some of the mantissa are
in the top 16 bits. Once these bits are set with a bitmask, the double becomes
a NaN. For more on this, see data.h and naref.h.

The pointers to the other types are stored in a naPtr union that contains
all the Nasal types, some of which, like naStr and naHash, can be used from
Nasal; others, like naObj and naCode, cannot be directly accessed from Nasal,
but are instead used by the underlying C code.

1 typedef union {
struct naObj∗ obj;

3 struct naStr∗ str;
struct naVec∗ vec;
struct naHash∗ hash;

6 struct naCode∗ code;
struct naFunc∗ func;
struct naCCode∗ ccode;

9 struct naGhost∗ ghost;
} naPtr;

These naRefs are the fundamental ’variable’ structure of Nasal, and the
closer one gets to the actual running of Nasal code, the more naRefs are used
(e.g. from codegen.c to code.c, which is going from barely any naRefs to essen-
tially as rich with naRefs as it gets).

An interesting thing to note is that some of the attributes of private, in-
ternal objects, like a function, are implemented using naRefs instead of their
“raw” counterparts, like naFunc*. This is probably because all the methods
that work with the types, e.g. naHash get, are implemented with naRefs (and
those use PTR(foo).hash, etc., to fetch the raw data type), and so it is often
much more convenient to use those methods since there are no “raw” equiva-
lents to use. It also could be for consistency, i.e. a naRef is always going to
be a fixed size independent of application (it is, after all, just a pointer/double
combination). Sometimes this leads to assumptions about the type of a mem-
ber/variable. This document uses the convention of naRef:〈type〉 to denote as-
sumptions about type, like naRef:naHash for hashes, naRef:naCode/naCCode
for executable code, and naRef:double for numbers. Violating these assump-
tions may cause code to crash!

5.1 Scalars

Nasal tries to keep a notion of “scalars” as numbers or strings, like Perl – in fact,
this is what the builtin typeof() function will return instead of “number” or
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“string”. While numbers and strings are still separate types behind the scenes,
Nasal will try to automatically convert from one to the other when running
code, e.g. making a number into a string when concatenating it, or vice-versa
for mathematical operators. Most of the Nasal extension function libraries will
convert between them as well, but be warned that some do not! Those that do
not use simple checks like IS STR() and IS NUM() instead of converting first using
naStringValue() and naNumValue(); this means that only if a value literally
represents a string or number will it be used as such. Simple ways to convert on
the Nasal side are using concatenation with an empty string and addition with
0 or using num().

5.2 Types

Here’s a reference to all of the raw types used in Nasal:

5.2.1 Strings/T STR/naStr

The naStr struct stores a string’s length and either its data (if it is less than
16 characters) or a pointer to its data. Unlike C, which uses null-termination
to determine the length of a string, Nasal explicitly stores the length of a string
so that it can contain any characters whatsoever – though it is null-terminated
as well, since C code often needs to deal with it like it actually was a C char*
array. Note that when using naStr fromdata, only a copy of the data is stored,
so that Nasal code can mutate the string without affecting the original bytes.

By default strings are mutable, including results of concatenation or substr().
When used as a key in a hash, a particular string has its “hashcode” member
set to non-zero, making it immutable. Using this method, constant strings in
the code (literals enclosed in double- or single-quotes) are made immutable.

API functions:

1 // String utilities:
int naStr_len(naRef s); // get the length of a string

3 char∗ naStr_data(naRef s); // pointer to null−terminated data
naRef naStr_fromdata(naRef dst, const char∗ data, int len); // set a string’s data and length
naRef naStr_concat(naRef dest, naRef s1, naRef s2); // concatenate two strings

6 naRef naStr_substr(naRef dest, naRef str, int start, int len); // take a subscript of a string

5.2.2 Vectors/T VEC/naVec

Vectors are resizeable arrays with automatic reallocation, using a standard
multiply-by-two rule for expanding. In comparison with bigger languages like
Python, Nasal’s vector operations are rather basic, but they do provide enough
functionality for most uses. Most extensions can be scripted using Nasal “classes”
or optimized as C code.

API functions:

1 // Vector utilities
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int naVec_size(naRef v); // get the size of a vector
3 naRef naVec_get(naRef v, int i); // get a specific element by index

void naVec_set(naRef vec, int i, naRef o); // set a specific element by index
int naVec_append(naRef vec, naRef o); // append to a vector

6 naRef naVec_removelast(naRef vec); // remove the last element
naRef naVec_removefirst(naRef vec); // remove the first element − only in SimGear!
void naVec_setsize(naRef vec, int sz); // set the size of a vector, padding with naNil()

5.2.3 Hashes/T HASH/naHash

Hashes are the unordered, associative container type in Nasal (no fancy name
like “dictionary”). Each string used as a hash key is made immutable via having
its “hashcode” set – this is simply storage for a special number used in looking
up and setting strings.

API functions:

1 // Hash utilities:
int naHash_size(naRef h); // get the size of a hash − number of elements

3 int naHash_get(naRef hash, naRef key, naRef∗ out); // get a key − returns 1 if it is found
naRef naHash_cget(naRef hash, char∗ key); // get a key using char∗ − DEPRECATED!
void naHash_set(naRef hash, naRef key, naRef val); // set a key to a value

6 void naHash_cset(naRef hash, char∗ key, naRef val); // set a key using char∗ − DEPRECATED←↩
!

void naHash_delete(naRef hash, naRef key); // delete a key from a hash
void naHash_keys(naRef dst, naRef hash); // get a vector of all keys in the hash

5.2.4 Functions/T FUNC/naFunc

A Nasal function is essentially a wrapper for executable objects, which can be
naCodes (written in Nasal) and naCCodes (written in C, i.e. extension func-
tions). This allows one common type for executing both of these. It is also the
only one of these three types which should appear in Nasal space: the other
two are more ‘raw’ and need to be wrapped and/or bound to a context before
they are exposed. Each naFunc stores three naRefs: code, namespace, and next.
code is the naRef:naCode/naCCode that should get executed, namespace is the
parent namespace of the function (i.e. the first level of recursion after the lo-
cals), and next is the naRef:naFunc:naCode that is the next link in the chain
of namespaces. Note that the last two members are only applicable to naCodes

since naCCodes do not have their own Nasal-space symbols.
There is no API for functions.

5.2.5 Nasal Fuctional Code/T CODE/naCode

This carries the data behind either a Nasal func{} expression or a complete
parsed file/script. In either case, these objects are generated during parsing, in
particular the “code generation” stage, and returned by naParseCode. They
consist of a constants block – basically a static heap of allocated storage. This
contains naRef constants, both scalars and func{} constructs, the bytecode of
the function, and info on line numbers versus opcode indices. These are accessed
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separately using macros in data.h, in particular since the constants are naRefs

while the others are unsigned shorts.
There is no API for code objects.

5.2.6 Ghosts/T GHOST/naGhost

Garbage Collected Handle to Outside Things, i.e. raw C pointers wrapped in
a naGhost struct and managed via the GC, using explicitly registered alloca-
tion/release functions for each ghost type.

API functions:

1 // Ghost utilities:
typedef struct naGhostType {

3 void(∗destroy)(void∗);
const char∗ name;

} naGhostType;
6 naRef naNewGhost(naContext c, naGhostType∗ t, void∗ ghost);

naGhostType∗ naGhost_type(naRef ghost);
void∗ naGhost_ptr(naRef ghost);

9 int naIsGhost(naRef r);

5.2.7 Extension functions/naCFunction/naCCode

Nasal Extension functions are usually functions with static linkage written in
C and callable from Nasal. They can, of course, work with C variables, like
from a pointer stored in a Nasal ghost variable, from a C library, or anything
else. They can also perform operations on Nasal variables through the Nasal
API (see nasal.h and the next section) – essentially anything that can be done
from Nasal, and in a potentially more efficient manner because it is compiled
down to native machine code. Each of these extension functions must match
this signature:

1 // The function signature for an extension function:
typedef naRef (∗naCFunction)(naContext ctx, naRef me, int argc, naRef∗ args);

This uses a scheme like the main() function where there is argc – the number
of arguments – and args – a pointer to the actual arguments, which are naRefs

in this case. The me reference is like “self” in general Python usage or “this”
in C++, and is set to the value of left-hand side of an expression if it is a
method call (e.g. the value of foo in foo.bar()) or is nil otherwise (e.g. even
in foo[‘bar’](), or just fn()). (Note that this would primarily be used for
methods operating on ghost objects.) The context is of course the currently
executing context, which is used to bind new naRefs to, etc.

1 // Extension functions ∗must∗ be static and convention is to use names that start with ‘f ’
static naRef f_demo(naContext ctx, naRef me, int argc, naRef∗ args)

3 {
// Write your C code here
return naNil();

6 }
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6 The Main Nasal API in C

All of the C API is included in the nasal.h file, which in turn gets included by
every module or application wanting to use Nasal. It includes the type-specific
manipulation functions shown above along with all of the types (naRef, naPtr,
etc.) and other parts of the API.

7 How to Create an API

8 Using CPPBind

Also see: http://wiki.flightgear.org/Nasal/CppBind.
C++Bind is a really cool API for interfacing with Nasal through C++

classes, methods, and advanced STL functionality.

Part II

Internals: Parsing through
Running

9 Overview of Parsing

“Parsing” a file involves a many-tiered hierarchy of transformations that results
in a piece of executable code stored in a newly-allocated naCode object. This
is essentially what a Nasal func{〈contents of file〉} expression would do, but of
course it is through parsing files that function expressions can be generated, not
the other way around.

Parsing of a script starts out in parse.c, the Nasal parser, which initial-
izes a new parse object (struct Parser p) and then runs the string through
the lexer, via naLex() (lex.c, line 338), generating list of “tokens” that represent
each lexeme (builtin Nasal keyword/operator), symbol, and constant. This then
is returned to parse.c, which runs a block parser over the tokens, adding tree
structure “up” and “down”. After this the precedence,,,,,,, parser goes throuhin
blocks and transforms them into a structured representation of operations. This
list, though still made of tokens, represents a more abstract view of the expres-
sion that is being parsed, but in a form that is easier for the code generation to
understand due to the fact that operators are tightly connectected with their
often complex operands. Finally, the expression list is given to naCodeGen()
(codegen.c, line 702), which takes the tokens and creates opcodes – low-level
instructions that will later be executed by the Nasal Virtual Machine each time
the function is called. The code object (as returned by naCodeGen) is then re-
turned from naParseCode(), to be saved to a naCode object or, by extension, a
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naRef referencing such.

9.1 Lexing

“Lexing” is the process of converting a stream of characters (which is hard for a
computer to directly read) to a series of objects (structs in C) that are easier
for a computer understand. In Nasal, a string is made into a linked list of
struct Tokens, each of which can represent either a “lexeme” (a symbol that
has special meaning in Nasal, like ‘+=’) or some other type of token, like a
string or numeric literal, or a symbol. Each Token can store a string and its
length or a double in addition to its type (Tok Literal, etc.) and its line
number.

9.2 Block and Precedence Parser

[Note: for this section, I can do a good job of explaining how the algorithms
work in an abstract manner, but if you want to understand how the C functions
fit together to do this work or learn what exactly is done, then I recommend
reading through the relevant functions in parse.c (precChildren, precBlock, and
parsePrecedence); it really isn’t a difficult task and will set you up for being able
to understand the algorithm and modify it —end note]

The first job that parse.c does is create the tree of tokens with regard to
adding “blocks”. Some tokens open a block and have a matching ending token;
namely parentheses (‘(’ and ‘)’), brackets (‘[’ and ‘]’), and curly braces (‘{’ and
‘}’). When the block parser comes upon an opening token, it parses succesive
tokens into children of the opening one until it finds an ending one. If another
opening brace is encountered, another block parser parses that and gets to
use up the tokens in the stream until its block has ended, which then returns
control back to the previous block parser at the token after the ending one. A
parse error occurs if a closing brace is encountered that does not match the
token that started the block or if the parse finds the end of the file without
encountering a suitable ending token. Aside from matching pairs, blockoids
(if/elsif/else, for/while, func, etc.) are also parsed at this stage. Parts of the
blockoid structure (parethesis as ”arguments” to the loopoid, braces or braceless
bodies, and extra else/elsif’s after an if) get put as children of the blockoid
token. Parethesis and braces obviously get parsed by the previously described
system, and a braceless body gets parsed by a special one which looks for a
semi-colon, miscellaneous end-of-block (like an extra closing parenthesis or even
an else token), or end of the file. The middle condition allows the end-of-block
to be parsed at a higher level. Consider this Nasal statement:

1 setlistener(”/sim/foo”, func print(”activated”));

The function body parser reads “print”, then a matching pair of parentheses,
and finds a closing parenthesis. This parenthesis looks out of place, but it
actually belongs to the token after setlistener, so to allow the parse to succeed
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the extra parenthesis must be declared as one-past-end-of-block and be the next
token the parent parser sees – which will successfully end the block since they
match.

Anyways, a blockoid construct ends up with potentially three children: a
parenthesized argument list, a body with braces or without (braceless bodies
end up as children of a Tok Brace, so the body always has braces going into
the next phase of parsing), and if the blockoid is an “if” then it can have an
else or elsif as its last child.

The next part of parsing is one of the most fun ones. The precedence parser
creates a binary tree out of the blocks of tokens that were previously generated.
There are three transformations that this parser can handle: Prec Binary/
Prec Reverse, Prec Prefix/Prec Suffix, and no precedence (single to-
ken). Prec Binary and Prec Reverse are opposites; same with Prec Prefix
and Prec Suffix. The main point of precedence parsing is to break a long
stream of tokens into a binary tree with a large expression formed by an op-
erator and optional expressions on either side. Each unary or binary operator
is given a precedence label at the top of parse.c. That table in order of parse-
first–parse-last is as follows:

Precedence: Token(s):
PREC REVERSE TOK SEMI TOK COMMA

PREC SUFFIX TOK ELLIPSIS
PREC PREFIX TOK RETURN TOK BREAK TOK CONTINUE

PREC REVERSE TOK ASSIGN TOK PLUSEQ TOK MINUSEQ
TOK MULEQ TOK DIVEQ TOK CATEQ

PREC REVERSE TOK COLON TOK QUESTION
PREC PREFIX TOK VAR
PREC BINARY TOK OR
PREC BINARY TOK AND
PREC BINARY TOK EQ TOK NEQ
PREC BINARY TOK LT TOK LTE TOK GT

TOK GTE
PREC BINARY TOK PLUS TOK MINUS TOK CAT
PREC BINARY TOK MUL TOK DIV
PREC PREFIX TOK MINUS TOK NEG TOK NOT
PREC SUFFIX TOK LPAR TOK LBRA
PREC BINARY TOK DOT

When the precedence parser gets run, it starts at the top row, and if a
condition is fullfilled, then the linked-list of Tokens is split into top (the matching
token), left, and right (which are added as the binary children of top, or 0 if there
is none to add). The left and right tokens are binary trees formed by extra calls
to the precedence parser, with four different rules according the the precedence
type. The prefix/suffix operators are simple: they are only recognized at the
beggining (if prefix) or end (if suffix) of the list. The tokens from the one inside
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of the matching token to the end of the opposite side are parsed as either the left
or right child (this is right for prefix, left for suffix). Any children are precedence
parsed as well and added on the other side, or 0 if there are no children. (Note:
children are only going to be present on parentheses or brackets in the role of a
suffix operator.)

Binary and reverse operators are a bit different: they can occur anywhere but
the endcaps (not the start token, not the end one, but anywhere in between).
For binary operators, the rightmost one is grabbed, and vice-versa for reverse
operators. (The way I remember this is that the statement separator (;) is a
reverse, but the top of the list of them is going to be the leftmost ones; thus
binary operators must have the top be the rightmost one, opposite of reading
order.) All the tokens from the start to one left of the operator is parsed as
the left child, and similarly for the right child. One side is parsed at the same
precedence (because there might be more of the same precedence level that lie
undiscovered) and the other is parsed at the next precedence level.

If the parser reaches a state where the end and start of the list are the same,
then that token is added to the tree as either a leaf (if it has no children) or
another branch (with both left and right pointers pointing to the top of the
precedence-parsed tree formed from its children). The end result of this sorting
is a tree of tokens, where each may have 0, 1, 2, or duple children (duple meaning
that both children are the same, which is true in the last case we discussed).
This tree for an example file looks something like this:

1 var x = 1.5 − 0.5;

1 // Notation:
// Prefix Name = value (Precedence)

3 // Prefix:
// l Left child
// r Right child

6 // b Both children (left == right)
// . (Spacer)
// Precedence: what rule was used to parse

9
TOP (Synthetic)
b SEMI (Reverse)

12 . l ASSIGN (Binary)
. . l VAR (Prefix)
. . . r SYMBOL = x (None)

15 . . r MINUS (Binary)
. . . l LITERAL = 1.5 (None)
. . . r LITERAL = 0.5 (None)

18 . r EMPTY (Synthetic)

10 Code Generation – producing bytecode

Code generation is the next step of parsing and is implemented in the file code-
gen.c. It takes the expression tree generated by the lexer and parse.c recursively
traverses it to create opcodes – little “numbers” (or an enum) that are interpreted
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by the Nasal Virtual Machine as instructions. With the exception of blockoids
(which have a slightly different structure with up to three children), the token
structure that code generation gets is a tree where the most important (high-
est precedence) tokens are on top, and tokens of lesser- and equal-importance
tokens on the sides; laws of grouping are followed as well (like parenthesis and
such) by having both left and right children point to the top of the tree for the
expression inside of the block.

The example above shows what is really neat about this approach: when it is
parsing, say, an assignment operator (=), it knows that the left side is going to
be a symbol and that the right side can be any type of expression. Seeing it this
way makes much more sense then first seeing the symbol, looking ahead for an
assignment, and then hoping the rest of the tokens parse correctly – that would
be a more text-based approach and it is not scalable for complicated syntaxes
with oodles of operators with different semantics.

The method used in parse.c allows for the minimal-step, maximally-recursive
code generator present in Nasal: parsing a mathematical operator is as simple
as generating the left and right expressions, and then emitting the correct VM
instruction afterwards – the function handling the mathematical operator does
not need to know what lives below the operator, only that it exists. Each step
of the generator (implemented in the genExpr function and surrounding static
functions) takes the smallest step it can and lets the parse tree work itself out
by calling helper functions to handle expressions and expression lists.

Local macros helping with abstraction include:

1. LEFT(tok) to get the left-hand branch of a token (i.e. tok->children).

2. RIGHT(tok) to get the right hand branch of a token (i.e. tok->lastChild).

3. BINARY(tok) to check if a token is a binary expression (if there is only two
children: tok->children and tok->lastChild, and nothing in between,
meaning that they reference each other in their next/prev members).

The low-level workhorses of the code generator are the emit() and emit

Immediate() functions, which directly write bytecode into the parser structure’s
codegen pointer.

1 static void emit(struct Parser∗ p, int val)
{

3 // Reallocate if necessary
if(p→cg→codesz >= p→cg→codeAlloced) {

int i, sz = p→cg→codeAlloced ∗ 2;
6 unsigned short∗ buf = naParseAlloc(p, sz∗sizeof(unsigned short));

for(i=0; i<p→cg→codeAlloced; i++) buf[i] = p→cg→byteCode[i];
p→cg→byteCode = buf;

9 p→cg→codeAlloced = sz;
}
// And add our next opcode

12 p→cg→byteCode[p→cg→codesz++] = (unsigned short)val;
}
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1 static void emitImmediate(struct Parser∗ p, int val, int arg)
{

3 emit(p, val);
emit(p, arg);

}

This “immediate” value is associated with the opcode and retrieved later in
the VM stage. In general it is just an unsigned short, but it can mean several
things.

Some immediate-mode opcodes refer to the constants table – this is a chunk
in the naCode which holds scalar constants (string/numeric literals) and code
constants (func{} blocks in the code). These opcodes always need the con-
stants index added when emitImmediate() is called, using either findConstant
Index() or a precomputed index, such as returned from newConstant(). Of this
type, there are only these three:

1. OP PUSHCONST

2. OP MEMBER

3. OP LOCAL

In addition, these two use their immediate value to represent their number
of arguments; this is because the VM needs to be able to pop the right amount
of arguments from the operand stack:

1. OP FCALL

2. OP MCALL

And lastly, branching instructions are also immediate-mode; their immediate
value refers to the index of the command to jump to. The specific opcodes are:

1. OP JIFTRUE

2. OP JIFNOT

3. OP JIFNOTPOP

4. OP JIFEND

5. OP JMP

6. OP JMPLOOP

When jumping backwards, the address is saved away earlier and emmitted
with the Op Jmp instruction, but when jumping forwards, the code it is jumping
to does not exist yet and therefore its index is not known. To get around that,
there are some functions to handle forward-jumps. emitJump makes a new jump
with a dummy index:
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1 // Emit a jump operation, and return the location of the address in
// the bytecode for future fixup in fixJumpTarget

3 static int emitJump(struct Parser∗ p, int op)
{

int ip;
6 emit(p, op);

ip = p→cg→codesz;
emit(p, 0xffff); // dummy address

9 return ip;
}

As suggested by the comment, fixJumpTarget is what comes along at the
desired jump-to point and adds in the correct index:

1 // Points a previous jump instruction at the current ”end−of−bytecode”
static void fixJumpTarget(struct Parser∗ p, int spot)

3 {
p→cg→byteCode[spot] = p→cg→codesz;

}

For typical usage, here’s a stripped down genIf example:

1 static void genIf(struct Parser∗ p, struct Token∗ tif, struct Token∗ telse)
{

3 int jumpNext, jumpEnd;
genExpr(p, tif→children); // the test
jumpNext = emitJump(p, OP_JIFNOTPOP);

6 genExprList(p, tif→children→next→children); // the body
jumpEnd = emitJump(p, OP_JMP);
fixJumpTarget(p, jumpNext);

9 if(telse) {
if(telse→type == TOK_ELSIF) genIf(p, telse, telse→next);
else genExprList(p, telse→children→children);

12 } else {
emit(p, OP_PUSHNIL);

}
15 fixJumpTarget(p, jumpEnd);

}

The first jump points to right after the second jump, since fixJumpTarget

is called after emitJump is called the second time. After the else{} clause is
handled, the second jump is made to point after all of that. The power in this
is allowing arbitrary chunks of code (e.g. as emitted from genExprList) to be
jumped over.

10.1 Initialization

Code generation itself is started in naCodeGen() where the code generation re-
lated data structures are allocated and initialized, including:

1. an naCode* code object

2. argument list processing

Afterwards, genExprList() is invoked, which in turn recursively invokes
itself and genExpr() while traversing the semi-colon-seperated statements in
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the parse tree, the latter is the primary workhorse of the code generator in that
it will recognize and turn tokens into bytecode primitives.

10.2 Constants Table

This stores constants used in a function’s body, both scalars and code. Im-
plemented during codegen as a naVec for the purposes of cheap alloc han-
dling, this gets turned into a static table as part of the naCode structure.
internConstant() is used to return a reference to the existing constant if one
already exists; it relies on newConstant() to add the constant if needed. Code
for both (in reverse order of declaration):

1 // Interns a scalar (!) constant and returns its index
static int internConstant(struct Parser∗ p, naRef c)

3 {
int i, n = naVec_size(p→cg→consts);
if(IS_CODE(c)) return newConstant(p, c);

6 for(i=0; i<n; i++) {
naRef b = naVec_get(p→cg→consts, i);
if(IS_NUM(b) && IS_NUM(c) && b.num == c.num) return i;

9 else if(IS_NIL(b) && IS_NIL(c)) return i;
else if(naStrEqual(b, c)) return i;

}
12 return newConstant(p, c);

}

15 static int newConstant(struct Parser∗ p, naRef c)
{

int i;
18 naVec_append(p→cg→consts, c);

i = naVec_size(p→cg→consts) − 1;
if(i > 0xffff) naParseError(p, ”too many constants in code block”, 0);

21 return i;
}

11 The Code Generation API

12 Code Generation Examples

13 Virtual Machine: running code

As mentioned before, the Nasal bytecode gets executed in code.c using an infinite
interpreter loop with a huge switch/case block in the form of the run() function
in code.c. This is the “Virtual Machine” (VM) of Nasal. In general, machines
take some form of operations (e.g. Nasal bytecode) and execute them based
upon other factors, like other inputs, and then produce an output of some kind.
(A virtual machine is simply such a machine that is implemented in software
not hardware – e.g. C/C++ code versus circuit boards). Some of the simplest
machines are stack machines; this is what is used for the Nasal VM, stack
machines are generally a popular concept, and e.g. also used by Java. The
Nasal stack machine uses two main stacks and pushes and pops from those
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stacks. Each stack is an array of variables with a fixed size – exceeding this
size is an error. The first stack is where all the opcodes are stored and it is for
all purposes of type unsigned short or int, since each opcode is part of an
enumeration. This also allows other integers to live on the stack as well (more
on this later). The other stack is made up of naRefs, which are the “operands”
that the opcodes operate on.

For most typical opcodes, the VM pops some arguments from the stack –
that is, it takes the top item on the stack and saves it to a variable if needed, then
it decrements the top of the stack so that the popped argument “disappears”
from the stack. After performing the operation, the VM will push a result back
onto the stack – this does the opposite of popping as it increments the top of
the stack and sets the new top item. Thus pushing makes a “new” item on
the top of the stack while popping takes one away. Eventually this change in
state cascades down as a result of operations and a useful output is acheived.
While the Nasal VM can do a fair amount of variable-handling operations on its
own, naCFunctions can add more operations (e.g. f setsize()) or can provide
access to anything accessible from C space, like f print() and the io library do.

These two stacks live in different places. The opcode stack lives in the
naCode object under the constants block and is extracted using the BYTECODE()
macro defined in data.h, which typecasts the naRef to an unsigned short* (see
data.h, line 147). The “cursor” for the bytecode is stored in the current frame’s
ip member. A common operation is then int op = BYTECODE(cd)[f->ip++];

(which is used in code.c to retrieve the opcode and/or an argument, implicitly
typecasting to an integer). By this method, the opcode “stack” is not a “true”
stack in the fact that it is immutable (should not be changed except using stack
operations like push/pop!) and can only move one direction (adds to it during
code generation, moves down it during the running of the code). The other
stack – the one of naRefs – is actually a real stack. The items are stored in
the context’s opStack member, which has MAX STACK DEPTH number of terms,
and its cursor is stored in the opTop member. Note that indexing opStack with
the current opTop index is not a valid operation – the true top item on the
stack is one below is at STK(1) or ctx->opTop-1. There are various helper
macros to help out with operations on this stack, like PUSH() and POP() and in
particular STK(n), which directly retrieves an item on the stack (where n = 1 is
the top member as previously mentioned, and n = 2 is the second, etc.). Note
that the STK() macro requires manual movement of the opTop index, i.e. the
programmer has to use ctx->opTop-- or ctx->opTop-=2. For more info, see
code.c, line 246 for PUSH(), and lines 520–523 for the other macros.

Also, there are two other relevant stacks. The first one is the stack of
frames. Since a function can be called in an overlapping fashion (e.g. a func-
tion calling itself recursively, or being called in a multithreaded fashion from
different threads), Nasal needs separate places to store information for each
separate call. This stack is made up of struct Frames and lives in the fS-
tack member, which has size of MAX RECURSION, and its index is in the fTop
member. New calls are pushed in at the fTop index and the current frame is
ctx->fStack[ctx->fTop-1] while the first frame is ctx->fStack[0].
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13.1 An example

To take an example of the VM in action, let’s say that we execute this Nasal
statement:

1 var foo = 1.5−0.5;

This takes and sets the local variable “foo” with the result of 1.5 minus 0.5
(code generation does not optimize any). This would produce a stack of opcodes
like this:

Stack of op codes: Stack of arguments:

[start] ... ctx->opTop

OP_PUSHCONST [end]

00003

OP_PUSHCONST

00004

OP_MINUS

OP_PUSHCONST

00005

OP_SETLOCAL

...

OP_RETURN

The first two opcodes are Op Pushconsts, which take a constant and
pushes it onto the (previosuly empty) stack at the top. This illustrates the
fact that each function call starts with a clean stack of operands, and all con-
stants have to be initialized. This particular one points to constant ‘3’, which
should hold an naRef with it’s number set to 0.5. Then we push another number,
which will be 1.5. Then we get this stack:

Stack of op codes: Stack of arguments:

... ... ctx->opTop

OP_MINUS naRef 1.5 STK(1)

OP_PUSHCONST naRef 0.5 STK(2)

00005 [end]

OP_SETLOCAL

...

OP_RETURN

The first opcode is Op Minus, which takes the first argument (1.5) and
subtracts the second (0.5) and places the result (1.0) where the second used to
be, then decrements the top of the stack. The stack now looks like this:

Stack of op codes: Stack of arguments:

... ... ctx->opTop

OP_PUSHCONST naRef 1.0 STK(1)
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00004 [end]

OP_SETLOCAL

...

OP_RETURN

Now we see Op Pushconst and a number after it. This push operation
takes an argument of type int from the stack of opcodes, not naRefs, and
retrieves the constant naRef stored at the specified index in the constants block
of the currently executing code using the CONSTARG() macro (code.c, line 520).
During code generation, this constant is saved away inside of the code’s constant
block for each required lvalue, and this opcode pushes the correct one onto the
stack – which should be a naRef representing “foo” and is pushed in before the
result of the Op Minus, setting us up for the next step:

Stack of op codes: Stack of arguments:

... ... ctx->opTop

OP_SETLOCAL naRef foo STK(1)

... naRef 1.0 STK(2)

OP_RETURN [end]

We finally get to Op Setlocal, which sets a local variable (i.e. one using
the ‘var’ keyword) to a value. It takes the first argument on the stack as the
lvalue (symbolic name) of the variable and the second as the value to set it to.
In this case, we see those are “foo” and 1, respectively, and so the variable foo
correctly gets set to 1. Note that this operation does not explicitly “return”
anything, i.e. it does not push a ‘result’, but it does have the implicit return
of the value set, since that is the last argument left on the stack (since the
Op Setlocal operation only moves down 1 on the stack). This illustrates an
interesting feature of Nasal: it always has its current working state and every
operation returns something. We will see this in action in the next paragraph.

Stack of op codes: Stack of arguments:

... ... ctx->opTop

OP_RETURN naRef ?? STK(1)

We execute some more statements in between and eventually get to a return
opcode – this is required otherwise the Nasal VM will get stuck in an infinite
loop and possibly do some very weird things. Anyways, sometimes this return
is implicit and is synthesized by the code generation, if so it returns the first
argument on the stack – remember how we called it the “current working state”?
An equivalent expression that makes this return explicit goes like so:

1 return (...);

Substitue the last expression you want to execute into the parentheses and
you are set. A great mistake would be to say “Oh, I just need to type return-
〈semicolon〉 and I’ll be set.” This is incorrect, since code generation makes an
Op Pushnil before any return statement like this:
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1 return (...);

Thus it would really return nil, not the last expression that was evaluated.
See line 631 of codegen.c for more information.

OP RETURN
...
...
...
...

13.2 VM Operators/Opcodes

Here is a semi-comprehensive list of all the operators and their functions.

13.2.1 Unary operators

Operators that modify STK(1) in place:

OP NOT Boolean inverse (i.e. !a, ¬a).

OP NEG Additive inverse (i.e. -a, −a).

13.2.2 Binary operators

Operators that pop two arguments and push a result:

OP PLUS Addition (i.e. a+b, a + b).

OP MINUS Subtraction (i.e. a-b, a− b).

OP MUL Multiplication (i.e. a*b, a× b).

OP DIV Division (i.e. a/b, a÷ b).

OP CAT Concatenate either two vectors or two strings (i.e. a~b).

OP LT Strictly less-than (i.e. a<b, a < b).

OP GT Strictly greater-than (i.e. a>b, a > b).

OP LTE Less-than-or-equal-to (i.e. a<=b, a ≤ b).

OP GTE Greater-than-or-equal-to (i.e. a>=b, a ≥ b).

OP EQ Equality or equivalence (i.e. a==b, a ≡ b; tests for numerical esuality
if possible and acts recursively on hashes and vectors besides comparing
pointers).

OP NEQ Non-equality/equivalence (i.e. a!=b, ¬(a ≡ b)).
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13.2.3 Push and/or pop operations

Operations that push or pop a naRef directly from the stack:

OP POP Pop one naRef off of the stack (actually, it just moves the top of the
stack down one).

OP DUP Push a duplicate of the top item.

OP DUP2 Push duplicates of the top two items (e.g. a, b becomes a′, b′, a, b).

OP PUSHONE Push a naRef ‘1’.

OP PUSHZERO Push a naRef ‘0’.

OP PUSHNIL Push a naNil().

OP PUSHEND Push an endToken().

OP PUSHCONST Take an integer argument from the opcode stack then re-
trieve and push the constant found at that index in the code’s constants
block. See the CONSTARG() macro, line 520 in code.c, for more details. Also
note that if the constant is a naCode object (inside of its naRef shell), then
it gets bound to the current context/frame via bindFunction() (which
turns it into a naFunc).

OP NEWVEC Push a new vector.

OP NEWHASH Push a new hash.

13.2.4 Jump operations

Operations that jump within either stack:

OP JMP Execute a non-conditional jump to the bytecode index specified by
the next item on the opcode stack (i.e. an integer one).

OP JMPLOOP Same, but execute naCheckBottleneck() first.

OP JIFTRUE Jump if the top naRef on the stack is true. Does not pop from
the stack!

OP JIFNOT Same, but jumps if false.

OP JIFNOTPOP Same as Op Jifnot but does pop from the stack.

OP JIFEND Jumps if the top naRef is an endToken() (i.e. the pointer equals
(void*)1). Pops only if it is an endToken().

OP MARK Pushes a mark (the current size of the naRef stack) onto the mark
stack.

OP UNMARK Pops off a mark and discards it.

OP BREAK Takes and restores a mark position.

OP BREAK2 Same, but pops it off instead of leaving it.
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13.2.5 Function calls

These opcodes either call a naCCode or push another stack frame for a naCode

call. The number of arguments is compiled during code generation and is thus
fixed. By default, the top nargs on the stack are used as the arguments, another
naRef is popped off as the function, and for method calls, another is popped off
for the ‘me’ reference. For named arguments, there is only 1 argument that is
taken from the stack, which becomes the locals hash for the new frame, otherwise
the locals are made by the setupArgs() function.

OP FCALL A basic function call.

OP MCALL A method call – sets the ‘me’ symbol.

OP FCALLH A function call with named arguments (the ‘H’ is probably for
“hash-like”).

OP MCALLH A method call with named arguments.

13.2.6 Set methods

These methods set a variable and usually leave the value that was set on the
stack, thus in most cases where you want to set something and don’t care about
the return, these should be followed by Op Pop.

OP SETLOCAL Set the local variable named by STK(1) to the value given
by STK(2).

OP SETSYM Like Op Setlocal but tries to find the variable in successive
namespaces (i.e. each func->next in turn). If it is not found there, place
it in the locals.

OP SETMEMBER STK(1) is the name of the member, STK(2) is the hash,
and STK(3) is the value.

OP INSERT Like Op Setmember but more generic for the case of vectors
as well (i.e. hashvec[index] versus hash.member).

OP HAPPEND Another hash set but this time with the arguments in a funny
order: STK(1) is the value to set, STK(2) the name, and STK(3) the hash.

13.2.7 Symbol “get” methods

OP LOCAL Takes a constant argument and pushes

OP MEMBER Retrieve a member from STK(1) with the name given by a
CONSTARG(). Recurses into the parents vector if necessary. This is unique
– no other function goes into the parents vector!
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13.2.8 Miscellaneous

Other opcodes:

OP XCHG Swap the top two items on the stack.

OP XCHG2 Swap the top three items on the stack (i.e. first becomes third
and the two others get shifted ‘up’ in the stack, thus a 1-2-3 order gets con-
verted to a 2-3-1 order). An Op Xchg2 followed by an Op Xchg results
in a total reversing (i.e. 3-2-1) and Op Xchg followed by an Op Xchg2
results in a swap of the lower two items (i.e. 1-3-2).

OP EACH Works like a vector get: STK(1) is the index and STK(2) is the
vector; it then increments the index and pushes the result.

OP INDEX Same, but pushes a copy of the index instead of the variable at
that position in the vector.

OP UNPACK Take the contents of the vector on the top of the stack and push
its contents one-by-one for the number of times specified by the argument
on the opccode stack.

OP RETURN If this is the top of the call stack (i.e. fTop is 1) then it returns
from the run() function with the value of STK(1), else it resets to the
next call up the stack setting the new STK(1) with the value of the old
STK(1).

13.3 Stack Frames

Stack frames are essential to running a programming language. Functions call
other functions, and their data must be stored on a stack. In Nasal, each struct

Context object has a stack of frames in its struct Frame fStack[] member,
whose top is stored in the int fTop member. The definition of each element is:

1 struct Frame {
naRef func;

3 naRef locals;
int ip;
int bp;

6 };

The func member stores the naFunc that created the Frame. The locals
member is a new hash that is loaded with the arguments to the function and
is used as the “running namespace”; it is discarded when the function returns,
unless saved by some means (either making a func{} that is findable by the
GC or using the caller() API). Thus, despite many calls to the same func-
tion, especially in recursion, each invocation will safely run in its own, separate
“workspace” and will not interfere with other calls of the same function. The ip
and bp members refer to the position in the opcode (instruction pointer and base
pointer) and naRef stacks, respectively. The former begins at 0 while the latter
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is equivalent to the ctx->opFrame at the time and is used to pop ctx->opFrame

back to its old value, so that the function can access its own data on that stack
again.

As a function call is executed, its frame is pushed onto the stack at the
current fTop index, which is then pushed up one. Thus the frame of the currently
executing code is ctx->fStack[ctx->fTop-1].

The relationship of of the operand stack with function calls is rather weird.
All functions on a context’s call stack end up using the same operand stack,
and they all have access only to the top of it – specifically they should only
access those that they pushed themselves. When a function call is done, any
of its data on the stack gets popped by setting ctx->opFrame = ctx->fStack

[ctx->fTop-1].bp, its return gets pushed, and now the old function can use
its old operands, with the return now added on top.

14 Garbage Collection

14.1 Mark & Sweep

When using a mark-and-sweep collector, unreachable objects are not immedi-
ately reclaimed. Instead, garbage is allowed to accumulate until all available
memory has been exhausted. When that happens, the execution of the pro-
gram is suspended temporarily while the mark-and-sweep algorithm collects all
the garbage. Once all unreferenced objects have been reclaimed, the normal
execution of the program can resume.

Obviously, the main disadvantage of the mark-and-sweep approach is the fact
that that normal program execution is suspended while the garbage collection
algorithm runs. In particular, this can be a problem in a program that must
satisfy real-time execution constraints (like a flight simulator). For example, an
interactive application that uses mark-and-sweep garbage collection becomes
unresponsive periodically.

The mark-and-sweep algorithm is called a tracing garbage collector because
is traces out the entire collection of objects that are directly or indirectly acces-
sible by the program. The objects that a program can access directly are those
objects which are referenced by local variables on the processor stack as well as
by any static variables that refer to objects. In the context of garbage collec-
tion, these variables are called the roots. An object is indirectly accessible if it
is referenced by a field in some other (directly or indirectly) accessible object.
An accessible object is said to be live. Conversely, an object which is not live is
garbage.

The mark-and-sweep algorithm consists of two phases: In the first phase, it
finds and marks all accessible objects. The first phase is called the mark phase.
In the second phase, the garbage collection algorithm scans through the heap
and reclaims all the unmarked objects. The second phase is called the sweep
phase.

Nasal’s implementation of sweep() (called reap()) works such that it is al-
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ways executed for a handful of different type-specific memory pools. In addition,
it also makes sure to allocate new memory if required.

14.2 Nasal Memory Pools

A memory pool is basically a preallocated region of memory, which is dynami-
cally resized as required. The Nasal GC works such that it manages a handful
of global memory pools for all native Nasal types (strings, functions, vectors,
hashes etc). At the moment, the hard coded defaults ensure that 25–50% of ad-
ditional object ”slots” (memory blocks) are kept available during each execution
of reap().

Whenever new memory is requested to create a new type (such as a vector
or a string), the available memory in the corresponding pool will be checked,
reachable objects will be marked, and dead objects will be removed from all
pools using a mark/sweep collector, new memory blocks will be allocated if
necessary. All of this happens atomically, i.e. single-threaded, in a “stop-the-
world” fashion.

All Nasal memory pools are implemented using memory blocks, a memory
block is implemented as a singly linked list. Each block contains a field to store
its size, a pointer to the allocated memory, and another pointer to the next
block.

1 struct Block {
int size; // size of the block

3 char∗ block; // pointer to the memory region
struct Block∗ next; // pointer to the next block

};

For each of the 7 Nasal data types, there is a separate storage pool used,
declared as part of the ”Globals” structure. As can be seen, each storage pool
is addressed by its enum index (0..6):

1 enum { T_STR, T_VEC, T_HASH, T_CODE, T_FUNC, T_CCODE, T_GHOST, NUM_NASAL_TYPES };

The 7 storage pools are declared in code.h as part of the ”Globals” structure:

1 struct Globals {
// Garbage collecting allocators:

3 struct naPool pools[NUM_NASAL_TYPES];
int allocCount;
// Dead blocks waiting to be freed when it is safe

6 void∗∗ deadBlocks;
int deadsz;
int ndead;

9 //...
};

New memory blocks are allocated using newBlock() and the memory is ini-
tialized with 0:
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1 static void newBlock(struct naPool∗ p, int need)
{

3 int i;
struct Block∗ newb;
if(need < MIN_BLOCK_SIZE) need = MIN_BLOCK_SIZE;

6 // allocate a new Block
newb = naAlloc(sizeof(struct Block));
// initialize the Block

9 newb→block = naAlloc(need ∗ p→elemsz); // number of elements ∗ size of element
newb→size = need; // set block size
// memory blocks are circular linked lists:

12 newb→next = p→blocks;
p→blocks = newb;
naBZero(newb→block, need ∗ p→elemsz);

15
if(need > p→freesz − p→freetop) need = p→freesz − p→freetop;
p→nfree = 0;

18 p→free = p→free0 + p→freetop;
// mark all new blocks as unreachable and add them to the pool’s free list
for(i=0; i < need; i++) {

21 // initialize each new new memory blocks by setting up an naRef (the container for all←↩
Nasal references)

struct naObj∗ o = (struct naObj∗)(newb→block + i∗p→elemsz);
o→mark = 0;

24 p→free[p→nfree++] = o;
}
p→freetop += need;

27 }

15 Error and Exception Handling

15.1 Parser error handling

This information is relevant to lex.c, parse.c, and codegen.c.
If an error occurs, often relevant information is lacking as there is no “state”

of the generator, so most errors end up saying “parse error” and give you a line
number, instead of what could be helpful information such as “inside a foreach
loop, this error occured”.
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15.2 VM error handling

15.3 Exception handling via call()

Part III

Examples and Existing Work

16 The Nasal Standard Library

17 Multithreading Support

18 Nasal bindings

18.1 SQLite

18.2 PCRE (regex)

18.3 Cairo

18.4 Gtk

18.5 OpenCL

19 Embedding Nasal

19.1 Basic Nasal Integration Example

1. create a new context using naNewContext()

2. parse the code using naParseCode()

3. create the standard namespace using naInit std()

4. add any custom symbols using naAddSym() (optional)

5. add other required bindings/libraries (optional)

6. use naCall() to call the code in the namespace

7. do error checking using naGetError()

1 // A Nasal extension function (prints its argument list to stdout)
static naRef print(naContext c, naRef me, int argc, naRef∗ args)

3 {
int i;
for(i=0; i<argc; i++) {

6 naRef s = naStringValue(c, args[i]);
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if(naIsNil(s)) continue;
fwrite(naStr_data(s), 1, naStr_len(s), stdout);

9 }
return naNil();

}

19.2 Nasal Integration in FlightGear

In FlightGear, Nasal is added as a SGSubsystem in the form of the FGNasal-
Sys class in $FG SRC/Scripting/NasalSys.cxx, which is mainly responsible for
initializing the interpreter at the moment, as most runtime code is invoked
through callbacks that are run via timers and listeners. It notably introduces
FlightGear-specific extension functions, like setlistener()/removelistener(),
settimer(), and systime() functions, and a new area of development is expos-
ing C++ classes and alternative Nasal APIs via ghosts, like the maketimer()
function does.

19.2.1 Initialization

At the moment, FGNasalSys loads all the Nasal code currently. This will hope-
fully be changed in the future to allow a Nasal script to do all of the loading,
making it a more flexible and transparent process, which is important to those
who do not compile from source or understand that source but need to know
how things work.

Initialization is a big part of running Nasal code in FlightGear and most
Nasal libraries/subsystems get loaded this way. But to keep running intermit-
tently, to provide an alternative method of loading, or to run a Nasal “action”
script, there are three other ways to run Nasal in FlightGear: timers, listeners,
and bindings.

19.2.2 Timers

Timers can be used to repetively run bits of code in a loop, somewhat like
a proper subsystem in FlightGear, to delay a response to something, or to
distrubute work across frames. settimer() is mainly used for this right now,
and it simply registers a function to be run after a certain amount of time –
this is checked every frame, and so at maximum it can only run at frame rate.
To run in a loop, the callback must re-register itself in a new timer, which is
inefficient. Recently, maketimer() was introduced, which returns a Nasal ghost
that is a virtual C++ timer object. This timer can be stopped, (re-)started,
and told to run at a certain interval (solving the need to reregister a timer),
or to just run once (like settimer() does, though maketimer() objects can be
reused). These both illustrate how to constantly run code in FlightGear, and
this can be very useful though being limited to the frame rate.
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19.2.3 Listeners

Another solution to looping is hooking a Nasal callback to a property that is
called by some subsystem updating at a potentially higher rate – like the rate of
the underlying flight dynamics model (FDM). These callbacks are called listen-
ers, and for long-standing reasons they may not work with all properties created
by C++ code, but there are some places where they are applicable. Other uses
are waiting for a user input (like adjusting a preference, which may require
3D objects or even Nasal modules to be loaded or unloaded), communicating
between systems, receiving direct input from C++ or other languages interfac-
ing with FlightGear, and more. In the future, all Nasal modules other than
necessary libraries might be loaded from listeners, as they provide a convient
way to run Nasal code that transcends all languages in FlightGear by using the
property tree.

19.2.4 Bindings/FGCommands

Bindings are the third and final way to run code. FlightGear has a core
set of commands – called fgcommands – that interact with their caller via
the property tree and can be executed from both C++ and Nasal (via the
fgcommand()function in Nasal). These are often wrapped in “bindings”, which
are property nodes that store the name of their command and arguments to
the command side-by-side. One of these commands is “nasal”, which executes
a Nasal snippet in a “script” node. Other commands provide access to C++
functionality, such as the flight plan. Nasal can actually register its own fgcom-
mands, so Nasal code can even be registered to run via bindings that do not use
the “nasal” command.

One of the exciting things about bindings is that they are prevalent in many
areas of FlightGear. In particular, they are often used to handle user input
(joystick and mouse events and “pick” animations on 3D objects) and can be
incorporated as elements of other systems, like checklists that can be “run” by
executing sequential bindings. These three parts of FlightGear, timers, listeners,
and bindings, allow for a big diversity in how Nasal code can be executed within
FlightGear. It also illustrates well what they have done with integrating Nasal
into its core – perhaps someday achieving the dream of using Nasal and C/C++
side by side.

20 Nasal Maintenance

If Nasal is not maintained well and code bases around it evolve too much,
then it might become a broken part of whatever it is integrated into, or even
being broken by itself. When integrating Nasal into a new place, developing
infrastructure to cement Nasal and the host application together will be needed,
and one even might want to extend core Nasal functionality. This section aims
to teach how some of these tasks can be done.
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20.1 Adding a new Token

20.2 Adding a new OP code

20.3 Adding a new binary operator

20.4 Adding a new loopoid

20.5 Adding a new extension function

21 Known Bugs & Issues

22 Maintenance Examples

Some ideas (brainstorming)

1. iterating through hashes (Philosopher; done)

2. serialize/unserialize functions

3. json support

4. native tasking primitives

5. DbC: preconditions/postconditions

6. protected types(via hashes) with implicit locking

7. do{}while() construct or other loopoid (Philosopher)

8. custom typing

9. list comprehension

22.1 Perl’s Spaceship Operator

See http://wiki.flightgear.org/How_to_add_a_new_binary_operator_to_
Nasal for the full example.

22.2 Slicing Strings

Currently, Nasal only supports slicing vectors, not strings. Let’s say that we
want the ability to slice strings as well; how would we go about adding this?
First we want to consider what stage of Nasal will be affected: parsing (parse.c,
codegen.c) or running (code.c)? It’s obvious that since the type of the sliced
variable is a runtime property, we will only be editing code.c, since anything
before that has no knowledge of the types of a variable – right? Well I thought
so too, but then I looked more closely and saw that codegen.c actually pushes
a new vector when it sees a slice. This is an optimization that obviously does
not work well with strings, and so I introduced a new opcode to push a slice of
the appropriate type – I called it Op Newslice.
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22.3 Tom’s String Methods

23 VM Extensions

23.1 Dumping internal data structures

23.2 Implementing support for parser hooks

23.3 Implementing debugging support via VM hooks and
custom opcodes

23.4 Implementing instrumentation/profiling support via
codegen hooks

23.5 Implementing a bytecode optimizer via VM hooks

23.6 Implementing RAII support via VM events

23.7 Exposing GC behavior to Nasal space

23.8 Implementing a VM debugger

1. breakpoints (via special opcodes or setjmp exceptions)

2. stepping

3. interactive, bash-style interface to stepping/executing code and viewing
the state of the VM. Could also be useful to have a “Nasal explorer” as
well. FGCanvas too, maybe?

24 Debugging Nasal

24.1 Dumping Tokens

24.2 Dumping the Parse Tree

24.3 Dumping Bytecode

24.4 Dumping Opcode/Operand Stacks

24.5 Dumping Stack Frames

24.6 Dumping GC State

25 Nasal Syntax
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