############################################################################### ## ## Walk view module for FlightGear. ## ## Inspired by the work of Stewart Andreason. ## ## Copyright (C) 2010 Anders Gidenstam (anders(at)gidenstam.org) ## This file is licensed under the GPL license v2 or later. ## ############################################################################### # Global API. Automatically selects the right walker for the current view. # NOTE: Coordinates are always 3 component lists: [x, y, z] in meters. # The coordinate system is the same as the main 3d model one. # X - back, Y - right and Z - up. # Set the forward speed of the active walker. # speed - walker speed in m/sec # Returns 1 of there is an active walker and 0 otherwise. var forward = func (speed) { var cv = view.current.getPath(); if (contains(walkers, cv)) { walkers[cv].forward(speed); return 1; } else { return 0; } } # Set the side step speed of the active walker. # speed - walker speed in m/sec # Returns 1 of there is an active walker and 0 otherwise. var side_step = func (speed) { var cv = view.current.getPath(); if (contains(walkers, cv)) { walkers[cv].side_step(speed); return 1; } else { return 0; } } # Get the currently active walker. # Returns the active walker object or nil otherwise. var active_walker = func { var cv = view.current.getPath(); if (contains(walkers, cv)) { return walkers[cv]; } else { return nil; } } ############################################################################### # The walker class. # ============================================================================== # Class for a moving view. # # CONSTRUCTOR: # walker.new(, , ); # # view name ... The name of the view : string # constraints ... The movement constraints : constraint hash # Determines where the view can go. # managers ... Optional list of custom managers. A manager is a # a hash that contains an update function of the type # func(walker instance). The update function # of each manager will be called as the last part of # each walker update. Intended for controlling a # a 3d model or similar. # # METHODS: # active() : bool # returns true if this walk view is active. # # forward(speed) # Sets the forward speed of this walk view. # speed ... speed in m/sec : double # # side_step(speed) # Sets the side step speed of this walk view. # speed ... speed in m/sec : double # # set_pos(pos) # pos ... position in meter : [double, double, double] # get_pos() : position ([meter, meter, meter]) # # set_eye_height(h) # get_eye_height() : int (meter) # # set_constraints(constraints) # get_constraints() : constraint hash # # EXAMPLE: # var constraint = # walkview.slopingYAlignedPlane.new([19.1, -0.3, -8.85], # [19.5, 0.3, -8.85]); # var walker = walkview.walker.new("Passenger View", constraint); # # See Aircraft/Nordstern, Aircraft/Short_Empire and Aircraft/ZLT-NT # for working examples of walk views. # # NOTES: # Currently there can only be one view manager per view so the # walk view should not have any other view manager. var Walker = { new : func (view_name, constraints = nil, managers = nil) { var obj = { parents : [Walker] }; obj.view = view.views[view.indexof(view_name)]; obj.constraints = constraints; obj.managers = managers; obj.position = [ obj.view.getNode("config/z-offset-m").getValue(), obj.view.getNode("config/x-offset-m").getValue(), obj.view.getNode("config/y-offset-m").getValue() ]; obj.heading = obj.view.getNode("config/heading-offset-deg").getValue(); obj.speed_fwd = 0.0; obj.speed_side = 0.0; obj.isactive = 0; obj.eye_height = 1.60; obj.goal_height = obj.position[2] + obj.eye_height; # Register this walker. view.manager.register(view_name, obj); walkers[obj.view.getPath()] = obj; #debug.dump(obj); return obj; }, active : func { return me.isactive; }, forward : func (speed) { me.speed_fwd = speed; }, side_step : func (speed) { me.speed_side = speed; }, set_pos : func (pos) { me.position[0] = pos[0]; me.position[1] = pos[1]; me.position[2] = pos[2]; }, get_pos : func { return [me.position[0], me.position[1], me.position[2]]; }, set_eye_height : func (h) { me.eye_height = h; }, get_eye_height : func { return me.eye_height; }, set_constraints : func (constraints) { me.constraints = constraints; }, get_constraints : func { return me.constraints; }, # View handler implementation. init : func { }, start : func { me.isactive = 1; me.last_time = getprop("/sim/time/elapsed-sec") - 0.0001; me.update(); me.position[2] = me.goal_height; }, stop : func { me.isactive = 0; }, # The update function is called by the view manager when the view is active. update : func { var t = getprop("/sim/time/elapsed-sec"); var dt = t - me.last_time; if (dt == 0.0) return; var cur = props.globals.getNode("/sim/current-view"); me.heading = cur.getNode("heading-offset-deg").getValue(); me.position[0] -= me.speed_fwd * dt * math.cos(me.heading * TO_RAD) + me.speed_side * dt * math.sin(me.heading * TO_RAD); me.position[1] -= me.speed_fwd * dt * math.sin(me.heading * TO_RAD) - me.speed_side * dt * math.cos(me.heading * TO_RAD); var cur_height = me.position[2]; if (me.constraints != nil) { me.position = me.constraints.constrain(me.position); me.goal_height = me.position[2] + me.eye_height; } # Change the view height smoothly if (math.abs(me.goal_height - cur_height) > 2.0 * dt) { me.position[2] = cur_height + 2.0 * dt * ((me.goal_height > cur_height) ? 1 : -1); } else { me.position[2] = me.goal_height; } cur.getNode("z-offset-m").setValue(me.position[0]); cur.getNode("x-offset-m").setValue(me.position[1]); cur.getNode("y-offset-m").setValue(me.position[2]); if (me.managers != nil) { foreach(var m; me.managers) { m.update(me); } } me.last_time = t; return 0.0; }, }; ############################################################################### # Constraint classes. Determines where the view can walk. # # Convenience functions. # Build a UnionConstraint hierarchy from a list of constraints. # cs - list of constraints : [constraint] var makeUnionConstraint = func (cs) { if (size(cs) < 2) return cs[0]; var ret = cs[0]; for (var i = 1; i < size(cs); i += 1) { ret = UnionConstraint.new(ret, cs[i]); } return ret; } # Build a UnionConstraint hierachy that represents a polyline path # with a certain width. Each internal point gets a circular surface. # points - list of points : [position] ([[meter, meter, meter]]) # width - width of the path : length (meter) # round_ends - put a circle also on the first and last points : bool var makePolylinePath = func (points, width, round_ends = 0) { if (size(points) < 2) return nil; var ret = LinePlane.new(points[0], points[1], width); if (round_ends) { ret = UnionConstraint.new(line, CircularXYSurface.new(points[0], width/2)); } for (var i = 2; i < size(points); i += 1) { var line = LinePlane.new(points[i-1], points[i], width); if (i + 1 < size(points) or round_ends) { line = UnionConstraint.new (line, CircularXYSurface.new(points[i], width/2)); } ret = UnionConstraint.new(line, ret); } return ret; } # The union of two constraints. # c1, c2 - the constraints : constraint # NOTE: Assumes that the constraints are convex. var UnionConstraint = { new : func (c1, c2) { var obj = { parents : [UnionConstraint] }; obj.c1 = c1; obj.c2 = c2; return obj; }, constrain : func (pos) { var p1 = me.c1.constrain(pos); var p2 = me.c2.constrain(pos); if (p1[0] == pos[0] and p1[1] == pos[1]) { return p1; } elsif (p2[0] == pos[0] and p2[1] == pos[1]) { return p2; } else { if (closerXY(pos, p1, p2) <= 0) { return p1; } else { return p2; } } } }; # Rectangular plane defined by a straight line and a width. # The line is extruded horizontally on each side by width/2 into a # planar surface. # p1, p2 - the line endpoints. : position ([meter, meter, meter]) # width - total width of the plane. : length (meter) var LinePlane = { new : func (p1, p2, width) { var obj = { parents : [LinePlane] }; obj.p1 = p1; obj.p2 = p2; obj.halfwidth = width/2; obj.length = vec2.length(vec2.sub(p2, p1)); obj.e1 = vec2.normalize(vec2.sub(p2, p1)); obj.e2 = [obj.e1[1], -obj.e1[0]]; obj.k = (p2[2] - p1[2]) / obj.length; return obj; }, constrain : func (pos) { var p = [pos[0], pos[1], pos[2]]; var pXY = vec2.sub(pos, me.p1); var along = vec2.dot(pXY, me.e1); var across = vec2.dot(pXY, me.e2); var along2 = max(0, min(along, me.length)); var across2 = max(-me.halfwidth, min(across, me.halfwidth)); if (along2 != along or across2 != across) { # Compute new XY position. var t = vec2.add(vec2.mul(along2, me.e1), vec2.mul(across2, me.e2)); p[0] = me.p1[0] + t[0]; p[1] = me.p1[1] + t[1]; } # Compute Z positition. p[2] = me.p1[2] + me.k * along2; return p; } }; # Circular surface aligned with the XY plane # center - the center point : position ([meter, meter, meter]) # radius - radius in the XY plane : length (meter) var CircularXYSurface = { new : func (center, radius) { var obj = { parents : [CircularXYSurface] }; obj.center = center; obj.radius = radius; return obj; }, constrain : func (pos) { var p = [pos[0], pos[1], me.center[2]]; var pXY = vec2.sub(pos, me.center); var lXY = vec2.length(pXY); if (lXY > me.radius) { var t = vec2.add(me.center, vec2.mul(me.radius/lXY, pXY)); p[0] = t[0]; p[1] = t[1]; } return p; }, }; # Mostly aligned plane sloping along the X axis. # NOTE: Obsolete. Use linePlane instead. # minp - the X,Y minimum point : position ([meter, meter, meter]) # maxp - the X,Y maximum point : position ([meter, meter, meter]) var SlopingYAlignedPlane = { new : func (minp, maxp) { return LinePlane.new([minp[0], (minp[1] + maxp[1])/2, minp[2]], [maxp[0], (minp[1] + maxp[1])/2, maxp[2]], (maxp[1] - minp[1])); } }; # Action constraint # Triggers an action when entering or exiting the constraint. # constraint - the area in question : constraint # on_enter() - function that is called when the walker enters the area. # on_exit(x, y) - function that is called when the walker leaves the area. # x and y are <0, 0 or >0 depending on in which direction(s) # the walker left the constraint. var ActionConstraint = { new : func (constraint, on_enter = nil, on_exit = nil) { var obj = { parents : [ActionConstraint] }; obj.constraint = constraint; obj.on_enter = on_enter; obj.on_exit = on_exit; obj.inside = 0; return obj; }, constrain : func (pos) { var p = me.constraint.constrain(pos); if (p[0] == pos[0] and p[1] == pos[1]) { if (!me.inside) { me.inside = 1; if (me.on_enter != nil) { me.on_enter(); } } } else { if (me.inside) { me.inside -= 1; if (!me.inside and me.on_exit != nil) { me.on_exit(pos[0] - p[0], pos[1] - p[1]); } } } return p; } }; ############################################################################### # Manager classes. # JSBSim pointmass manager. # Moves a pointmass representing the crew member together with the view. # CONSTRUCTOR: # JSBSimPointmass.new(); # # pointmass index ... The index of the pointmass : int # offsets ... [x, y ,z] position in meter of the origin of the # JSBSim structural frame in the 3d model frame. # # NOTE: Only supports aligned frames (yet). # var JSBSimPointmass = { new : func (index, offsets = nil) { var base = props.globals.getNode("fdm/jsbsim/inertia"); var prefix = "pointmass-location-"; var postfix = "-inches[" ~ index ~"]"; var obj = { parents : [JSBSimPointmass] }; obj.pos_ft = [ base.getNode(prefix ~ "X" ~ postfix), base.getNode(prefix ~ "Y" ~ postfix), base.getNode(prefix ~ "Z" ~ postfix) ]; obj.offset = (offsets == nil) ? [0.0, 0.0, 0.0] : offsets; return obj; }, update : func (walker) { var pos = walker.get_pos(); pos[2] += walker.get_eye_height()/2; forindex (var i; pos) { me.pos_ft[i].setValue((pos[i] - me.offset[i])*M2FT*12); } } }; ############################################################################### # Module implementation below var TO_RAD = math.pi/180; var TO_DEG = 180/math.pi; var walkers = {}; var closerXY = func (pos, p1, p2) { var l1 = [p1[0] - pos[0], p1[1] - pos[1]]; var l2 = [p2[0] - pos[0], p2[1] - pos[1]]; return (l1[0]*l1[0] + l1[1]*l1[1]) - (l2[0]*l2[0] + l2[1]*l2[1]); } var max = func (a, b) { return b > a ? b : a; } var min = func (a, b) { return a > b ? b : a; } # 2D vector math. var vec2 = { add : func (a, b) { return [a[0] + b[0], a[1] + b[1]]; }, sub : func (a, b) { return [a[0] - b[0], a[1] - b[1]]; }, mul : func (k, a) { return [k * a[0], k * a[1]]; }, length : func (a) { return math.sqrt(a[0]*a[0] + a[1]*a[1]); }, dot : func (a, b) { return a[0]*b[0] + a[1]*b[1]; }, normalize : func (a) { var s = 1/vec2.length(a); return [s * a[0], s * a[1]]; } }