# This module provide basic functions and classes for use in aircraft specific # Nasal context. # helper functions # ============================================================================== # creates (if necessary) and returns a property node from arg[0], # which can be a property node already, or a property path # var makeNode = func(n) { if (isa(n, props.Node)) return n; else return props.globals.getNode(n, 1); } # returns args[index] if available and non-nil, or default otherwise # var optarg = func(args, index, default) { size(args) > index and args[index] != nil ? args[index] : default; } # door # ============================================================================== # class for objects moving at constant speed, with the ability to # reverse moving direction at any point. Appropriate for doors, canopies, etc. # # SYNOPSIS: # door.new(, [, ]); # # property ... door node: property path or node # swingtime ... time in seconds for full movement (0 -> 1) # startpos ... initial position (default: 0) # # PROPERTIES: # ./position-norm (double) (default: ) # ./enabled (bool) (default: 1) # # EXAMPLE: # var canopy = aircraft.door.new("sim/model/foo/canopy", 5); # canopy.open(); # var door = { new: func(node, swingtime, pos = 0) { var m = { parents: [door] }; m.node = makeNode(node); m.swingtime = swingtime; m.enabledN = m.node.initNode("enabled", 1, "BOOL"); m.positionN = m.node.initNode("position-norm", pos); m.target = pos < 0.5; return m; }, # door.enable(bool) -> set ./enabled enable: func(v) { me.enabledN.setBoolValue(v); me; }, # door.setpos(double) -> set ./position-norm without movement setpos: func(pos) { me.stop(); me.positionN.setValue(pos); me.target = pos < 0.5; me; }, # double door.getpos() -> return current position as double getpos: func { me.positionN.getValue(); }, # door.close() -> move to closed state close: func { me.move(me.target = 0); }, # door.open() -> move to open state open: func { me.move(me.target = 1); }, # door.toggle() -> move to opposite end position toggle: func { me.move(me.target); }, # door.stop() -> stop movement stop: func { interpolate(me.positionN); }, # door.move(double) -> move to arbitrary position move: func(target) { var pos = me.getpos(); if (pos != target) { var time = abs(pos - target) * me.swingtime; interpolate(me.positionN, target, time); } me.target = !me.target; }, }; # light # ============================================================================== # class for generation of pulsing values. Appropriate for controlling # beacons, strobes, etc. # # SYNOPSIS: # light.new(, [, ]); # light.new(, , [, ]); # # property ... light node: property path or node # stretch ... multiplicator for all pattern values # pattern ... array of on/off time intervals (in seconds) # switch ... property path or node to use as switch (default: ./enabled) # instead of ./enabled # # PROPERTIES: # ./state (bool) (default: 0) # ./enabled (bool) (default: 0) except if given) # # EXAMPLES: # aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]); # anonymous light #------- # var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1], # "controls/lighting/strobe"); # strobe.switch(1); #------- # var switch = props.globals.getNode("controls/lighting/strobe", 1); # var pattern = [0.02, 0.03, 0.02, 1]; # aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, switch); # aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, switch); # var light = { new: func { m = { parents: [light] }; m.node = makeNode(arg[0]); var stretch = 1.0; var c = 1; if (typeof(arg[c]) == "scalar") { stretch = arg[c]; c += 1; } m.pattern = arg[c]; c += 1; if (size(arg) > c and arg[c] != nil) m.switchN = makeNode(arg[c]); else m.switchN = m.node.getNode("enabled", 1); m.switchN.initNode(nil, 0, "BOOL"); m.stateN = m.node.initNode("state", 0, "BOOL"); forindex (var i; m.pattern) m.pattern[i] *= stretch; m.index = 0; m.loopid = 0; m.continuous = 0; m.lastswitch = 0; m.seqcount = -1; m.endstate = 0; m.count = nil; m.switchL = setlistener(m.switchN, func m._switch_(), 1); return m; }, # class destructor del: func { removelistener(me.switchL); }, # light.switch(bool) -> set light switch (also affects other lights # that use the same switch) switch: func(v) { me.switchN.setBoolValue(v); me; }, # light.toggle() -> toggle light switch toggle: func { me.switchN.setBoolValue(!me.switchN.getValue()); me; }, # light.cont() -> continuous light cont: func { if (!me.continuous) { me.continuous = 1; me.loopid += 1; me.stateN.setBoolValue(me.lastswitch); } me; }, # light.blink() -> blinking light (default) # light.blink(3) -> when switched on, only run three blink sequences; # second optional arg defines state after the sequences blink: func(count = -1, endstate = 0) { me.seqcount = count; me.endstate = endstate; if (me.continuous) { me.continuous = 0; me.index = 0; me.stateN.setBoolValue(0); me.lastswitch and me._loop_(me.loopid += 1); } me; }, _switch_: func { var switch = me.switchN.getBoolValue(); switch != me.lastswitch or return; me.lastswitch = switch; me.loopid += 1; if (me.continuous or !switch) { me.stateN.setBoolValue(switch); } elsif (switch) { me.stateN.setBoolValue(0); me.index = 0; me.count = me.seqcount; me._loop_(me.loopid); } }, _loop_: func(id) { id == me.loopid or return; if (!me.count) { me.loopid += 1; me.stateN.setBoolValue(me.endstate); return; } me.stateN.setBoolValue(me.index == 2 * int(me.index / 2)); settimer(func me._loop_(id), me.pattern[me.index]); if ((me.index += 1) >= size(me.pattern)) { me.index = 0; if (me.count > 0) me.count -= 1; } }, }; # lowpass # ============================================================================== # class that implements a variable-interval EWMA (Exponentially Weighted # Moving Average) lowpass filter with characteristics independent of the # frame rate. # # SYNOPSIS: # lowpass.new(); # # EXAMPLE: # var lp = aircraft.lowpass.new(1.5); # print(lp.filter(10)); # prints 10 # print(lp.filter(0)); # var lowpass = { new: func(coeff) { var m = { parents: [lowpass] }; m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0"); m.value = nil; return m; }, # filter(raw_value) -> push new value, returns filtered value filter: func(v) { me.filter = me._filter_; me.value = v; }, # get() -> returns filtered value get: func { me.value; }, # set() -> sets new average and returns it set: func(v) { me.value = v; }, _filter_: func(v) { var dt = getprop("/sim/time/delta-sec"); var c = dt / (me.coeff + dt); me.value = v * c + me.value * (1 - c); }, }; # angular lowpass # ============================================================================== # same as above, but for angles. Filters sin/cos separately and calculates the # angle again from them. This avoids unexpected jumps from 179.99 to -180 degree. # var angular_lowpass = { new: func(coeff) { var m = { parents: [angular_lowpass] }; m.sin = lowpass.new(coeff); m.cos = lowpass.new(coeff); m.value = nil; return m; }, filter: func(v) { v *= D2R; me.value = math.atan2(me.sin.filter(math.sin(v)), me.cos.filter(math.cos(v))) * R2D; }, set: func(v) { v *= D2R; me.sin.set(math.sin(v)); me.cos.set(math.cos(v)); }, get: func { me.value; }, }; # data # ============================================================================== # class that loads and saves properties to aircraft-specific data files in # ~/.fgfs/aircraft-data/ (Unix) or %APPDATA%\flightgear.org\aircraft-data\. # There's no public constructor, as the only needed instance gets created # by the system. # # SYNOPSIS: # data.add(); # data.save([]) # # properties ... about any combination of property nodes (props.Node) # or path name strings, or lists or hashes of them, # lists of lists of them, etc. # interval ... save in minutes intervals, or only once # if 'nil' or empty (and again at reinit/exit) # # SIGNALS: # /sim/signals/save ... set to 'true' right before saving. Can be used # to update values that are to be saved # # EXAMPLE: # var p = props.globals.getNode("/sim/model", 1); # var vec = [p, p]; # var hash = {"foo": p, "bar": p}; # # # add properties # aircraft.data.add("/sim/fg-root", p, "/sim/fg-home"); # aircraft.data.add(p, vec, hash, "/sim/fg-root"); # # # now save only once (and at exit/reinit, which is automatically done) # aircraft.data.save(); # # # or save now and every 30 sec (and at exit/reinit) # aircraft.data.save(0.5); # var data = { init: func { me.path = getprop("/sim/fg-home") ~ "/aircraft-data/" ~ getprop("/sim/aircraft") ~ ".xml"; me.signalN = props.globals.getNode("/sim/signals/save", 1); me.catalog = []; me.loopid = 0; me.interval = 0; setlistener("/sim/signals/reinit", func(n) { n.getBoolValue() and me._save_() }); setlistener("/sim/signals/exit", func me._save_()); }, load: func { if (io.stat(me.path) != nil) { printlog("info", "loading aircraft data from ", me.path); io.read_properties(me.path, props.globals); } }, save: func(v = nil) { me.loopid += 1; if (v == nil) { me._save_(); } else { me.interval = 60 * v; me._loop_(me.loopid); } }, _loop_: func(id) { id == me.loopid or return; me._save_(); settimer(func me._loop_(id), me.interval); }, _save_: func { size(me.catalog) or return; printlog("debug", "saving aircraft data to ", me.path); me.signalN.setBoolValue(1); var data = props.Node.new(); foreach (var c; me.catalog) { if (c[0] == `/`) c = substr(c, 1); props.copy(props.globals.getNode(c, 1), data.getNode(c, 1)); } io.write_properties(me.path, data); }, add: func(p...) { foreach (var n; props.nodeList(p)) append(me.catalog, n.getPath()); }, }; # timer # ============================================================================== # class that implements timer that can be started, stopped, reset, and can # have its value saved to the aircraft specific data file. Saving the value # is done automatically by the aircraft.Data class. # # SYNOPSIS: # timer.new( [, [, ]]) # # ... property path or props.Node hash that holds the timer value # ... timer update resolution -- interval in seconds in which the # timer property is updated while running (default: 1 s) # ... bool that defines whether the timer value should be saved # and restored next time, as needed for Hobbs meters # (default: 1) # # EXAMPLES: # var hobbs_turbine = aircraft.timer.new("/sim/time/hobbs/turbine[0]", 60); # hobbs_turbine.start(); # # aircraft.timer.new("/sim/time/hobbs/battery", 60).start(); # anonymous timer # var timer = { new: func(prop, res = 1, save = 1) { var m = { parents: [timer] }; m.node = makeNode(prop); if (m.node.getType() == "NONE") m.node.setDoubleValue(0); me.systimeN = props.globals.getNode("/sim/time/elapsed-sec", 1); m.last_systime = nil; m.interval = res; m.loopid = 0; m.running = 0; m.reinitL = setlistener("/sim/signals/reinit", func(n) { if (n.getValue()) { m.stop(); m.total = m.node.getValue(); } else { m.node.setDoubleValue(m.total); } }); if (save) { data.add(m.node); m.saveL = setlistener("/sim/signals/save", func m._save_()); } else { m.saveL = nil; } return m; }, del: func { me.stop(); removelistener(me.reinitL); if (me.saveL != nil) removelistener(me.saveL); }, start: func { me.running and return; me.last_systime = me.systimeN.getValue(); if (me.interval != nil) me._loop_(me.loopid); me.running = 1; me; }, stop: func { me.running or return; me.running = 0; me.loopid += 1; me._apply_(); me; }, reset: func { me.node.setDoubleValue(0); me.last_systime = me.systimeN.getValue(); }, _apply_: func { var sys = me.systimeN.getValue(); me.node.setDoubleValue(me.node.getValue() + sys - me.last_systime); me.last_systime = sys; }, _save_: func { if (me.running) me._apply_(); }, _loop_: func(id) { id != me.loopid and return; me._apply_(); settimer(func me._loop_(id), me.interval); }, }; # livery # ============================================================================= # Class that maintains livery XML files (see English Electric Lightning for an # example). The last used livery is saved on exit and restored next time. Livery # files are regular PropertyList XML files whose properties are copied to the # main tree. # # SYNOPSIS: # livery.init( [, [, ]]); # # ... directory with livery XML files, relative to $FG_ROOT # ... property path to the livery name in the livery files # and the property tree (default: sim/model/livery/name) # ... property path to the sort criterion (default: same as # -- that is: alphabetic sorting) # # EXAMPLE: # aircraft.livery.init("Aircraft/Lightning/Models/Liveries", # "sim/model/livery/variant", # "sim/model/livery/index"); # optional # # aircraft.livery.dialog.toggle(); # aircraft.livery.select("OEBH"); # aircraft.livery.next(); # var livery = { init: func(dir, nameprop = "sim/model/livery/name", sortprop = nil) { me.parents = [gui.OverlaySelector.new("Select Livery", dir, nameprop, sortprop, "sim/model/livery/file")]; me.dialog = me.parents[0]; }, }; # livery_update # ============================================================================= # Class for maintaining liveries in MP aircraft. It is used in Nasal code that's # embedded in aircraft animation XML files, and checks in intervals whether the # parent aircraft has changed livery, in which case it changes the livery # in the remote aircraft accordingly. This class is a wrapper for overlay_update. # # SYNOPSIS: # livery_update.new( [, [, ]]); # # ... directory with livery files, relative to $FG_ROOT # ... checking interval in seconds (default: 10) # ... callback function that's called with the ./sim/model/livery/file # contents as argument whenever the livery has changed. This can # be used for post-processing. # # EXAMPLE: # # # var livery_update = aircraft.livery_update.new( # "Aircraft/R22/Models/Liveries", 30, # func print("R22 livery update")); # # # # livery_update.stop(); # # # var livery_update = { new: func(liveriesdir, interval = 10.01, callback = nil) { var m = { parents: [livery_update, overlay_update.new()] }; m.parents[1].add(liveriesdir, "sim/model/livery/file", callback); m.parents[1].interval = interval; return m; }, stop: func { me.parents[1].stop(); }, }; # overlay_update # ============================================================================= # Class for maintaining overlays in MP aircraft. It is used in Nasal code that's # embedded in aircraft animation XML files, and checks in intervals whether the # parent aircraft has changed an overlay, in which case it copies the respective # overlay to the aircraft's root directory. # # SYNOPSIS: # livery_update.new(); # livery_update.add(, [, ]); # # ... directory with overlay files, relative to $FG_ROOT # ... MP property where the overlay file name can be found # (usually one of the sim/multiplay/generic/string properties) # ... callback function that's called with two arguments: # the file name (without extension) and the overlay directory # # EXAMPLE: # # # var update = aircraft.overlay_update.new(); # update.add("Aircraft/F4U/Models/Logos", "sim/multiplay/generic/string"); # # # # update.stop(); # # # var overlay_update = { new: func { var m = { parents: [overlay_update] }; m.root = cmdarg(); m.data = {}; m.interval = 10.01; if (m.root.getName() == "multiplayer") m._loop_(); return m; }, add: func(path, prop, callback = nil) { var path = path ~ '/'; me.data[path] = [me.root.initNode(prop, ""), "", typeof(callback) == "func" ? callback : func nil]; return me; }, stop: func { me._loop_ = func nil; }, _loop_: func { foreach (var path; keys(me.data)) { var v = me.data[path]; var file = v[0].getValue(); if (file != v[1]) { io.read_properties(path ~ file ~ ".xml", me.root); v[2](v[1] = file, path); } } settimer(func me._loop_(), me.interval); }, }; # steering # ============================================================================= # Class that implements differential braking depending on rudder position. # Note that this overrides the controls.applyBrakes() wrapper. If you need # your own version, then override it again after the steering.init() call. # # SYNOPSIS: # steering.init([ [, ]]); # # ... property path or props.Node hash that enables/disables # brake steering (usually bound to the js trigger button) # ... defines range (+- threshold) around neutral rudder # position in which both brakes are applied # # EXAMPLES: # aircraft.steering.init("/controls/gear/steering", 0.2); # aircraft.steering.init(); # var steering = { init: func(switch = "/controls/gear/brake-steering", threshold = 0.3) { me.threshold = threshold; me.switchN = makeNode(switch); me.switchN.setBoolValue(me.switchN.getBoolValue()); me.leftN = props.globals.getNode("/controls/gear/brake-left", 1); me.rightN = props.globals.getNode("/controls/gear/brake-right", 1); me.rudderN = props.globals.getNode("/controls/flight/rudder", 1); me.loopid = 0; controls.applyBrakes = func(v, w = 0) { if (w < 0) steering.leftN.setValue(v); elsif (w > 0) steering.rightN.setValue(v); else steering.switchN.setValue(v); } setlistener(me.switchN, func(n) { me.loopid += 1; if (n.getValue()) me._loop_(me.loopid); else me.setbrakes(0, 0); }, 1); }, _loop_: func(id) { id == me.loopid or return; var rudder = me.rudderN.getValue(); if (rudder > me.threshold) me.setbrakes(0, rudder); elsif (rudder < -me.threshold) me.setbrakes(-rudder, 0); else me.setbrakes(1, 1); settimer(func me._loop_(id), 0); }, setbrakes: func(left, right) { me.leftN.setDoubleValue(left); me.rightN.setDoubleValue(right); }, }; # autotrim # ============================================================================= # Singleton class that supports quick trimming and compensates for the lack # of resistance/force feedback in most joysticks. Normally the pilot trims such # that no real or artificially generated (by means of servo motors and spring # preloading) forces act on the stick/yoke and it is in a comfortable position. # This doesn't work well on computer joysticks. # # SYNOPSIS: # autotrim.start(); # on key/button press # autotrim.stop(); # on key/button release (mod-up) # # USAGE: # (1) move the stick such that the aircraft is in an orientation that # you want to trim for (forward flight, hover, ...) # (2) press autotrim button and keep it pressed # (3) move stick/yoke to neutral position (center) # (4) release autotrim button # var autotrim = { init: func { me.elevator = me.Trim.new("elevator"); me.aileron = me.Trim.new("aileron"); me.rudder = me.Trim.new("rudder"); me.loopid = 0; me.active = 0; }, start: func { me.active and return; me.active = 1; me.elevator.start(); me.aileron.start(); me.rudder.start(); me._loop_(me.loopid += 1); }, stop: func { me.active or return; me.active = 0; me.loopid += 1; me.update(); }, _loop_: func(id) { id == me.loopid or return; me.update(); settimer(func me._loop_(id), 0); }, update: func { me.elevator.update(); me.aileron.update(); me.rudder.update(); }, Trim: { new: func(name) { var m = { parents: [autotrim.Trim] }; m.trimN = props.globals.getNode("/controls/flight/" ~ name ~ "-trim", 1); m.ctrlN = props.globals.getNode("/controls/flight/" ~ name, 1); return m; }, start: func { me.last = me.ctrlN.getValue(); }, update: func { var v = me.ctrlN.getValue(); me.trimN.setDoubleValue(me.trimN.getValue() + me.last - v); me.last = v; }, }, }; # tyresmoke # ============================================================================= # Provides a property which can be used to contol particles used to simulate tyre # smoke on landing. Weight on wheels, vertical speed, ground speed, ground friction # factor are taken into account. Tyre slip is simulated by low pass filters. # # Modifications to the model file are required. # # Generic XML particle files are available, but are not mandatory # (see Hawker Seahawk for an example). # # SYNOPSIS: # aircraft.tyresmoke.new() # - the index of the gear to which the tyre smoke is attached # aircraft.tyresmoke.update() # # EXAMPLE: # var tyresmoke_0 = aircraft.tyresmoke.new(0); # tyresmoke_0.update(); # var tyresmoke = { new: func(number) { var m = { parents: [tyresmoke] }; me.vertical_speed = props.globals.initNode("velocities/vertical-speed-fps"); me.speed = props.globals.initNode("velocities/groundspeed-kt"); me.rain = props.globals.initNode("environment/metar/rain-norm"); var gear = props.globals.getNode("gear/gear[" ~ number ~ "]/"); m.wow = gear.initNode("wow"); m.tyresmoke = gear.initNode("tyre-smoke", 0, "BOOL"); m.friction_factor = gear.initNode("ground-friction-factor", 1); m.sprayspeed = gear.initNode("sprayspeed-ms"); m.spray = gear.initNode("spray", 0, "BOOL"); m.spraydensity = gear.initNode("spray-density", 0, "DOUBLE"); if (getprop("sim/flight-model") == "jsb") { var wheel_speed = "fdm/jsbsim/gear/unit[" ~ number ~ "]/wheel-speed-fps"; m.rollspeed = props.globals.initNode(wheel_speed); m.get_rollspeed = func m.rollspeed.getValue() * 0.3043; } else { m.rollspeed = gear.initNode("rollspeed-ms"); m.get_rollspeed = func m.rollspeed.getValue(); } m.lp = lowpass.new(2); return m; }, update: func { var rollspeed = me.get_rollspeed(); var vert_speed = me.vertical_speed.getValue(); var groundspeed = me.speed.getValue(); var friction_factor = me.friction_factor.getValue(); var wow = me.wow.getValue(); var rain = me.rain.getValue(); var filtered_rollspeed = me.lp.filter(rollspeed); var diff = math.abs(rollspeed - filtered_rollspeed); var diff_norm = diff > 0 ? diff / rollspeed : 0; if (wow and vert_speed < -1.2 and diff_norm > 0.05 and friction_factor > 0.7 and groundspeed > 50 and rain < 0.20) { me.tyresmoke.setValue(1); me.spray.setValue(0); me.spraydensity.setValue(0); } elsif (wow and groundspeed > 5 and rain >= 0.20) { me.tyresmoke.setValue(0); me.spray.setValue(1); me.sprayspeed.setValue(rollspeed * 6); me.spraydensity.setValue(rain * groundspeed); } else { me.tyresmoke.setValue(0); me.spray.setValue(0); me.sprayspeed.setValue(0); me.spraydensity.setValue(0); } }, }; # rain # ============================================================================= # Provides a property which can be used to control rain. Can be used to turn # off rain in internal views, and or used with a texture on canopies etc. # The output is co-ordinated with system precipitation: # # /sim/model/rain/raining-norm rain intensity # /sim/model/rain/flow-mps drop flow speed [m/s] # # See Hawker Seahawk for an example. # # SYNOPSIS: # aircraft.rain.init(); # aircraft.rain.update(); # var rain = { init: func { me.elapsed_timeN = props.globals.getNode("sim/time/elapsed-sec"); me.dtN = props.globals.getNode("sim/time/delta-sec"); me.enableN = props.globals.initNode("sim/rendering/precipitation-aircraft-enable", 0, "BOOL"); me.precip_levelN = props.globals.initNode("environment/params/precipitation-level-ft", 0); me.altitudeN = props.globals.initNode("position/altitude-ft", 0); me.iasN = props.globals.initNode("velocities/airspeed-kt", 0); me.rainingN = props.globals.initNode("sim/model/rain/raining-norm", 0); me.flowN = props.globals.initNode("sim/model/rain/flow-mps", 0); var canopyN = props.globals.initNode("gear/canopy/position-norm", 0); var thresholdN = props.globals.initNode("sim/model/rain/flow-threshold-kt", 15); setlistener(canopyN, func(n) me.canopy = n.getValue(), 1, 0); setlistener(thresholdN, func(n) me.threshold = n.getValue(), 1); setlistener("sim/rendering/precipitation-gui-enable", func(n) me.enabled = n.getValue(), 1); setlistener("environment/metar/rain-norm", func(n) me.rain = n.getValue(), 1); setlistener("sim/current-view/internal", func(n) me.internal = n.getValue(), 1); }, update: func { var altitude = me.altitudeN.getValue(); var precip_level = me.precip_levelN.getValue(); if (me.enabled and me.internal and altitude < precip_level and me.canopy < 0.001) { var time = me.elapsed_timeN.getValue(); var ias = me.iasN.getValue(); var dt = me.dtN.getValue(); me.flowN.setDoubleValue(ias < me.threshold ? 0 : time * 0.5 + ias * NM2M * dt / 3600); me.rainingN.setDoubleValue(me.rain); me.enableN.setBoolValue(0); } else { me.flowN.setDoubleValue(0); me.rainingN.setDoubleValue(0); me.enableN.setBoolValue(1); } }, }; # teleport # ============================================================================= # Usage: aircraft.teleport(lat:48.3, lon:32.4, alt:5000); # var teleport = func(airport = "", runway = "", lat = -9999, lon = -9999, alt = 0, speed = 0, distance = 0, azimuth = 0, glideslope = 0, heading = 9999) { setprop("/sim/presets/airport-id", airport); setprop("/sim/presets/runway", runway); setprop("/sim/presets/latitude-deg", lat); setprop("/sim/presets/longitude-deg", lon); setprop("/sim/presets/altitude-ft", alt); setprop("/sim/presets/airspeed-kt", speed); setprop("/sim/presets/offset-distance-nm", distance); setprop("/sim/presets/offset-azimuth-nm", azimuth); setprop("/sim/presets/glideslope-deg", glideslope); setprop("/sim/presets/heading-deg", heading); fgcommand("presets-commit"); } # returns wind speed [kt] from given direction [deg]; useful for head-wind # var wind_speed_from = func(azimuth) { var dir = (getprop("/environment/wind-from-heading-deg") - azimuth) * D2R; return getprop("/environment/wind-speed-kt") * math.cos(dir); } # returns true airspeed for given indicated airspeed [kt] and altitude [m] # var kias_to_ktas = func(kias, altitude) { var seapress = getprop("/environment/pressure-sea-level-inhg"); var seatemp = getprop("/environment/temperature-sea-level-degc"); var coralt_ft = altitude * M2FT + (29.92 - seapress) * 910; return kias * (1 + 0.00232848233 * (seatemp - 15)) * (1.0025 + coralt_ft * (0.0000153 - kias * (coralt_ft * 0.0000000000003 + 0.0000000045) + (0.0000119 * (math.exp(coralt_ft * 0.000016) - 1)))); } # HUD control class to handle both HUD implementations # ============================================================================== # var HUD = { init: func { me.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1); me.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1); me.currcolN = props.globals.getNode("/sim/hud/current-color", 1); me.paletteN = props.globals.getNode("/sim/hud/palette", 1); me.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1); me.currentN = me.vis0N; }, cycle_color: func { # h-key if (!me.currentN.getBoolValue()) # if off, turn on return me.currentN.setBoolValue(1); var i = me.currcolN.getValue() + 1; # if through, turn off if (i < 0 or i >= size(me.paletteN.getChildren("color"))) { me.currentN.setBoolValue(0); me.currcolN.setIntValue(0); } else { # otherwise change color me.currentN.setBoolValue(1); me.currcolN.setIntValue(i); } }, cycle_brightness: func { # H-key me.is_active() or return; var br = me.brightnessN.getValue() - 0.2; me.brightnessN.setValue(br > 0.01 ? br : 1); }, normal_type: func { # i-key me.is_active() or return; me.oldinit1(); me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.currentN = me.vis0N; }, cycle_type: func { # I-key me.is_active() or return; if (me.currentN == me.vis0N) { me.vis0N.setBoolValue(0); me.vis1N.setBoolValue(1); me.currentN = me.vis1N; } elsif (me.currentN == me.vis1N) { me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.oldinit2(); me.currentN = me.vis0N; } }, oldinit1: func { fgcommand("hud-init"); }, oldinit2: func { fgcommand("hud-init2"); }, is_active: func { me.vis0N.getValue() or me.vis1N.getValue(); }, }; # module initialization # ============================================================================== # _setlistener("/sim/signals/nasal-dir-initialized", func { props.globals.initNode("/sim/time/elapsed-sec", 0); props.globals.initNode("/sim/time/delta-sec", 0); props.globals.initNode("/sim/time/delta-realtime-sec", 0.00000001); HUD.init(); data.init(); autotrim.init(); if (getprop("/sim/startup/save-on-exit")) { data.load(); var n = props.globals.getNode("/sim/aircraft-data"); if (n != nil) foreach (var c; n.getChildren("path")) if (c.getType() != "NONE") data.add(c.getValue()); } else { data._save_ = func nil; data._loop_ = func nil; } });