#version 330 core // math.glsl float M_PI(); float M_1_PI(); float M_1_4PI(); const float RAYLEIGH_PHASE_SCALE = 0.05968310365946075091; // 3/(16*pi) const float HENYEY_ASYMMETRY = 0.8; const float HENYEY_ASYMMETRY2 = HENYEY_ASYMMETRY*HENYEY_ASYMMETRY; // Rayleigh scattering coefficient at sea level, units m^-1 // "Rayleigh-scattering calculations for the terrestrial atmosphere" // by Anthony Bucholtz (1995). const vec4 molecular_scattering_coefficient_base = vec4(6.605e-6, 1.067e-5, 1.842e-5, 3.156e-5); // Ozone absorption cross section, units m^2 / molecules // "High spectral resolution ozone absorption cross-sections" // by V. Gorshelev et al. (2014). const vec4 ozone_cross_section = vec4(3.472e-21, 3.914e-21, 1.349e-21, 11.03e-23) * 1e-4f; const float ozone_mean_monthly_dobson[] = float[]( 347.0, // January 370.0, // February 381.0, // March 384.0, // April 372.0, // May 352.0, // June 333.0, // July 317.0, // August 298.0, // September 285.0, // October 290.0, // November 315.0 // December ); const float ozone_height_distribution[] = float[]( 9.0 / 210.0, 14.0 / 210.0, 111.0 / 210.0, 64.0 / 210.0, 6.0 / 210.0, 6.0 / 210.0, 0.0 ); /* * Every aerosol type expects 5 parameters: * - Scattering cross section * - Absorption cross section * - Base density (km^-3) * - Background density (km^-3) * - Height scaling parameter * These parameters can be sent as uniforms. * * This model for aerosols and their corresponding parameters come from * "A Physically-Based Spatio-Temporal Sky Model" * by Guimera et al. (2018). */ // Urban uniform vec4 aerosol_absorption_cross_section = vec4(2.8722e-24, 4.6168e-24, 7.9706e-24, 1.3578e-23); uniform vec4 aerosol_scattering_cross_section = vec4(1.5908e-22, 1.7711e-22, 2.0942e-22, 2.4033e-22); uniform float aerosol_base_density = 1.3681e20; uniform float aerosol_relative_background_density = 2e6 / 1.3681e20; uniform float aerosol_height_scale = 0.73; uniform float aerosol_turbidity = 1.0; uniform int month_of_the_year = 0; uniform vec4 ground_albedo = vec4(0.3); uniform float fg_EarthRadius; //------------------------------------------------------------------------------ float get_earth_radius() { return fg_EarthRadius; } float get_atmosphere_radius() { return 6471e3; // m } /* * Helper function to obtain the transmittance to the top of the atmosphere * from the precomputed transmittance LUT. */ vec4 transmittance_from_lut(sampler2D lut, float cos_theta, float normalized_altitude) { float u = clamp(cos_theta * 0.5 + 0.5, 0.0, 1.0); float v = clamp(normalized_altitude, 0.0, 1.0); return texture(lut, vec2(u, v)); } /* * Returns the distance between ro and the first intersection with the sphere * or -1.0 if there is no intersection. The sphere's origin is (0,0,0). * -1.0 is also returned if the ray is pointing away from the sphere. */ float ray_sphere_intersection(vec3 ro, vec3 rd, float radius) { float b = dot(ro, rd); float c = dot(ro, ro) - radius*radius; if (c > 0.0 && b > 0.0) return -1.0; float d = b*b - c; if (d < 0.0) return -1.0; if (d > b*b) return (-b+sqrt(d)); return (-b-sqrt(d)); } /* * Rayleigh phase function. */ float molecular_phase_function(float cos_theta) { return RAYLEIGH_PHASE_SCALE * (1.0 + cos_theta*cos_theta); } /* * Henyey-Greenstrein phase function. */ float aerosol_phase_function(float cos_theta) { float den = 1.0 + HENYEY_ASYMMETRY2 + 2.0 * HENYEY_ASYMMETRY * cos_theta; return M_1_4PI() * (1.0 - HENYEY_ASYMMETRY2) / (den * sqrt(den)); } /* * Get the approximated multiple scattering contribution for a given point * within the atmosphere. */ vec4 get_multiple_scattering(sampler2D transmittance_lut, float cos_theta, float normalized_height, float d) { // Solid angle subtended by the planet from a point at d distance // from the planet center. float omega = 2.0 * M_PI() * (1.0 - sqrt(d*d - get_earth_radius()*fg_EarthRadius) / d); omega = max(0.0, omega); vec4 T_to_ground = transmittance_from_lut(transmittance_lut, cos_theta, 0.0); vec4 T_ground_to_sample = transmittance_from_lut(transmittance_lut, 1.0, 0.0) / transmittance_from_lut(transmittance_lut, 1.0, normalized_height); // 2nd order scattering from the ground vec4 L_ground = M_1_4PI() * omega * (ground_albedo * M_1_PI()) * T_to_ground * T_ground_to_sample * max(0.0, cos_theta); // Fit of Earth's multiple scattering coming from other points in the atmosphere vec4 L_ms = 0.02 * vec4(0.217, 0.347, 0.594, 1.0) * (1.0 / (1.0 + 5.0 * exp(-17.92 * cos_theta))); return L_ms + L_ground; } /* * Return the molecular volume scattering coefficient (m^-1) for a given altitude * in kilometers. */ vec4 get_molecular_scattering_coefficient(float h) { return molecular_scattering_coefficient_base * exp(-0.07771971 * pow(h, 1.16364243)); } /* * Return the molecular volume absorption coefficient (km^-1) for a given altitude * in kilometers. */ vec4 get_molecular_absorption_coefficient(float h) { int i = int(clamp(h / 9.0, 0.0, 6.0)); float density = ozone_height_distribution[i] * ozone_mean_monthly_dobson[month_of_the_year] * 2.6867e20f; // molecules / m^2 density /= 9e3; // m^-3 return ozone_cross_section * density; // m^-1 } /* * Return the aerosol density for a given altitude in kilometers. */ float get_aerosol_density(float h) { return aerosol_base_density * (exp(-h / aerosol_height_scale) + aerosol_relative_background_density); } /* * Get the collision coefficients (scattering and absorption) of the * atmospheric medium for a given point at an altitude h. */ void get_atmosphere_collision_coefficients(in float h, out vec4 aerosol_absorption, out vec4 aerosol_scattering, out vec4 molecular_absorption, out vec4 molecular_scattering, out vec4 extinction) { h = max(h, 0.0); // In case height is negative float aerosol_density = get_aerosol_density(h * 1e-3) * aerosol_turbidity; aerosol_absorption = aerosol_absorption_cross_section * aerosol_density * 1e-3; aerosol_scattering = aerosol_scattering_cross_section * aerosol_density * 1e-3; molecular_absorption = get_molecular_absorption_coefficient(h * 1e-3); molecular_scattering = get_molecular_scattering_coefficient(h * 1e-3); extinction = aerosol_absorption + aerosol_scattering + molecular_absorption + molecular_scattering; } /* * Any given ray inside the atmospheric medium can end in one of 3 places: * 1. The Earth's surface. * 2. Outer space. We define the boundary between space and the atmosphere * at the Kármán line (100 km above sea level). * 3. Any object within the atmosphere. */ float get_ray_end(vec3 ray_origin, vec3 ray_dir, float t_max) { float ray_altitude = length(ray_origin); // Handle the camera being underground float earth_radius = min(ray_altitude, get_earth_radius()); float atmos_dist = ray_sphere_intersection(ray_origin, ray_dir, get_atmosphere_radius()); float ground_dist = ray_sphere_intersection(ray_origin, ray_dir, earth_radius); float t_d; if (ray_altitude < get_atmosphere_radius()) { // We are inside the atmosphere if (ground_dist < 0.0) { // No ground collision, use the distance to the outer atmosphere t_d = atmos_dist; } else { // We have a collision with the ground, use the distance to it t_d = ground_dist; } } else { // We are in outer space // XXX: For now this is a flight simulator, not a space simulator t_d = -1.0; } return min(t_d, t_max); } /* * Compute the in-scattering integral of the volume rendering equation (VRE) * * The integral is solved numerically by ray marching. The final in-scattering * returned by this function is a 4D vector of the spectral radiance sampled for * the 4 wavelengths at the top of this file. To obtain an RGB triplet, the * spectral radiance must be multiplied by the spectral irradiance of the Sun * and converted to sRGB. */ vec4 compute_inscattering(in vec3 ray_origin, in vec3 ray_dir, in float t_max, in vec3 sun_dir, in int steps, in sampler2D transmittance_lut, out vec4 transmittance) { float cos_theta = dot(-ray_dir, sun_dir); float molecular_phase = molecular_phase_function(cos_theta); float aerosol_phase = aerosol_phase_function(cos_theta); float dt = t_max / float(steps); vec4 L_inscattering = vec4(0.0); transmittance = vec4(1.0); for (int i = 0; i < steps; ++i) { float t = (float(i) + 0.5) * dt; vec3 x_t = ray_origin + ray_dir * t; float distance_to_earth_center = length(x_t); vec3 zenith_dir = x_t / distance_to_earth_center; float altitude = distance_to_earth_center - get_earth_radius(); float normalized_altitude = altitude / (get_atmosphere_radius() - get_earth_radius()); float sample_cos_theta = dot(zenith_dir, sun_dir); vec4 aerosol_absorption, aerosol_scattering; vec4 molecular_absorption, molecular_scattering; vec4 extinction; get_atmosphere_collision_coefficients( altitude, aerosol_absorption, aerosol_scattering, molecular_absorption, molecular_scattering, extinction); vec4 transmittance_to_sun = transmittance_from_lut( transmittance_lut, sample_cos_theta, normalized_altitude); vec4 ms = get_multiple_scattering( transmittance_lut, sample_cos_theta, normalized_altitude, distance_to_earth_center); vec4 S = molecular_scattering * (molecular_phase * transmittance_to_sun + ms) + aerosol_scattering * (aerosol_phase * transmittance_to_sun + ms); vec4 step_transmittance = exp(-dt * extinction); // Energy-conserving analytical integration // "Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite" // by Sébastien Hillaire vec4 S_int = (S - S * step_transmittance) / max(extinction, 1e-7); L_inscattering += transmittance * S_int; transmittance *= step_transmittance; } return L_inscattering; }