#version 330 core layout(location = 0) in vec4 pos; layout(location = 3) in vec4 multiTexCoord0; out vec4 waterTex1; out vec4 waterTex2; out mat3 TBN; out vec3 ecPosition; out vec2 TopoUV; uniform float WindE, WindN; uniform float osg_SimulationTime; uniform mat4 osg_ModelViewMatrix; uniform mat4 osg_ModelViewProjectionMatrix; uniform mat4 osg_ViewMatrixInverse; uniform mat3 osg_NormalMatrix; // constants for the cartesian to geodetic conversion. const float a = 6378137.0; //float a = equRad; const float squash = 0.9966471893352525192801545; const float latAdjust = 0.9999074159800018; //geotiff source for the depth map const float lonAdjust = 0.9999537058469516; //actual extents: +-180.008333333333326/+-90.008333333333340 void rotationmatrix(float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } void main() { gl_Position = osg_ModelViewProjectionMatrix * pos; ecPosition = (osg_ModelViewMatrix * pos).xyz; // Using precalculated vectors // vec3 T = normalize(osg_NormalMatrix * tangent); // vec3 B = normalize(osg_NormalMatrix * binormal); // vec3 N = normalize(osg_NormalMatrix * normal); vec3 T = normalize(osg_NormalMatrix * vec3(0.0, -1.0, 0.0)); vec3 B = normalize(osg_NormalMatrix * vec3(1.0, 0.0, 0.0)); vec3 N = normalize(osg_NormalMatrix * vec3(0.0, 0.0, 1.0)); TBN = mat3(T, B, N); mat4 RotationMatrix; vec4 t1 = vec4(0.0, osg_SimulationTime * 0.005217, 0.0, 0.0); vec4 t2 = vec4(0.0, osg_SimulationTime * -0.0012, 0.0, 0.0); float Angle; float windFactor = sqrt(WindE * WindE + WindN * WindN) * 0.05; if (WindN == 0.0 && WindE == 0.0) { Angle = 0.0; }else{ Angle = atan(-WindN, WindE) - atan(1.0); } rotationmatrix(Angle, RotationMatrix); waterTex1 = multiTexCoord0 * RotationMatrix - t1 * windFactor; rotationmatrix(Angle, RotationMatrix); waterTex2 = multiTexCoord0 * RotationMatrix - t2 * windFactor; // Geodesy lookup for depth map vec3 rawPos = (osg_ViewMatrixInverse * vec4(ecPosition, 1.0)).xyz; float e2 = abs(1.0 - squash * squash); float ra2 = 1.0/(a * a); float e4 = e2 * e2; float XXpYY = rawPos.x * rawPos.x + rawPos.y * rawPos.y; float Z = rawPos.z; float sqrtXXpYY = sqrt(XXpYY); float p = XXpYY * ra2; float q = Z*Z*(1.0-e2)*ra2; float r = 1.0/6.0*(p + q - e4); float s = e4 * p * q/(4.0*r*r*r); if ( s >= 2.0 && s <= 0.0) s = 0.0; float t = pow(1.0+s+sqrt(s*2.0+s*s), 1.0/3.0); float u = r + r*t + r/t; float v = sqrt(u*u + e4*q); float w = (e2*u+ e2*v-e2*q)/(2.0*v); float k = sqrt(u+v+w*w)-w; float D = k*sqrtXXpYY/(k+e2); vec2 NormPosXY = normalize(rawPos.xy); vec2 NormPosXZ = normalize(vec2(D, rawPos.z)); float signS = sign(rawPos.y); if (-0.00015 <= rawPos.y && rawPos.y<=.00015) signS = 1.0; float signT = sign(rawPos.z); if (-0.0002 <= rawPos.z && rawPos.z<=.0002) signT = 1.0; float cosLon = dot(NormPosXY, vec2(1.0,0.0)); float cosLat = dot(abs(NormPosXZ), vec2(1.0,0.0)); TopoUV.s = signS * lonAdjust * degrees(acos(cosLon))/180.; TopoUV.t = signT * latAdjust * degrees(acos(cosLat))/90.; TopoUV.s = TopoUV.s * 0.5 + 0.5; TopoUV.t = TopoUV.t * 0.5 + 0.5; }