// -*- mode: C; -*- // Licence: GPL v2 // Authors: Frederic Bouvier and Gijs de Rooy // with major additions and revisions by // Emilian Huminiuc and Vivian Meazza 2011 // ported to Atmospheric Light Scattering // by Thorsten Renk, 2013 // changes for road and traffic rendering // by Thorsten Renk 2017 -2019 #version 120 varying vec3 VBinormal; varying vec3 VNormal; varying vec3 VTangent; varying vec3 rawpos; varying vec3 reflVec; varying vec3 vViewVec; varying vec3 vertVec; varying float alpha; uniform sampler2D BaseTex; uniform sampler2D NormalTex; uniform sampler2D ReflMapTex; uniform sampler2D CarTex; uniform sampler2D CarMetaTex; uniform sampler2D ReflGradientsTex; uniform samplerCube Environment; uniform sampler2D GrainTex; uniform int dirt_enabled; uniform int dirt_multi; uniform int nmap_dds; uniform int nmap_enabled; uniform int refl_enabled; uniform int refl_type; uniform int refl_map; uniform int grain_texture_enabled; uniform int road_traffic_direction; uniform int rain_enabled; uniform int road_traffic_enabled; uniform int cloud_shadow_flag; uniform int use_searchlight; uniform int use_landing_light; uniform int use_alt_landing_light; uniform float amb_correction; uniform float dirt_b_factor; uniform float dirt_g_factor; uniform float dirt_r_factor; uniform float nmap_tile; uniform float refl_correction; uniform float refl_fresnel; uniform float refl_fresnel_factor; uniform float refl_noise; uniform float refl_rainbow; uniform float grain_magnification; uniform float wetness; uniform float rain_norm; uniform float road_traffic_density; uniform float streetlight_factor; uniform float road_traffic_variation; uniform float avisibility; uniform float cloud_self_shading; uniform float eye_alt; uniform float ground_scattering; uniform float hazeLayerAltitude; uniform float moonlight; uniform float overcast; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float visibility; uniform float air_pollution; uniform float snowlevel; uniform float snow_thickness_factor; uniform float osg_SimulationTime; uniform float landing_light1_offset; uniform float landing_light2_offset; uniform float landing_light3_offset; uniform bool use_IR_vision; // constants needed by the light and fog computations ################################################### const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; uniform vec3 dirt_r_color; uniform vec3 dirt_g_color; uniform vec3 dirt_b_color; uniform vec3 streetlight_color; float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density); float shadow_func (in float x, in float y, in float noise, in float dist); float fog_func (in float targ, in float altitude); float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt); float alt_factor(in float eye_alt, in float vertex_alt); float light_distance_fading(in float dist); float fog_backscatter(in float avisibility); float rand2D(in vec2 co); float Noise2D(in vec2 coord, in float wavelength); vec3 rayleigh_out_shift(in vec3 color, in float outscatter); vec3 get_hazeColor(in float lightArg); vec3 searchlight(); vec3 landing_light(in float offset, in float offsetv); vec3 filter_combined (in vec3 color) ; vec3 addLights(in vec3 color1, in vec3 color2); float getShadowing(); float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } void road_type_mapper (in vec2 coord, out float rtype_traffic_density, out float rtype_base_illumination, out float rtype_traffic_speed, out int rtype_dual_lane) { if (coord.s < 0.125) // railway { rtype_dual_lane = 0; rtype_traffic_density = 0; rtype_base_illumination = 0; rtype_traffic_speed = 0.0; } else if (coord.s < 0.250) // residential { rtype_dual_lane = 0; rtype_traffic_density = 0.3; rtype_base_illumination = 0.65; rtype_traffic_speed = 0.5; } else if (coord.s < 0.375) // single-lane major { rtype_dual_lane = 0; rtype_traffic_density = 1.0; rtype_base_illumination = 0.65; rtype_traffic_speed = 1.0; } else if (coord.s < 0.5) { rtype_dual_lane = 0; rtype_traffic_density = 0.0; rtype_base_illumination = 0.0; rtype_traffic_speed = 0.0; } else if (coord.s < 0.625) // grass { rtype_dual_lane = 0; rtype_traffic_density = 0.0; rtype_base_illumination = 0.0; rtype_traffic_speed = 0.0; } else if (coord.s < 0.750) // dual-lane highway { rtype_dual_lane = 1; rtype_traffic_density = 1.0; rtype_base_illumination = 0.0; rtype_traffic_speed = 1.0; } else if (coord.s < 0.875) // dirt { rtype_dual_lane = 0; rtype_traffic_density = 0.1; rtype_base_illumination = 0.0; rtype_traffic_speed = 0.3; } else // tramway { rtype_dual_lane = 0; rtype_traffic_density = 0.0; rtype_base_illumination = 0.0; rtype_traffic_speed = 0.0; } } void main (void) { vec4 texel = texture2D(BaseTex, gl_TexCoord[0].st); vec4 nmap = texture2D(NormalTex, gl_TexCoord[0].st * nmap_tile); vec4 reflmap = texture2D(ReflMapTex, gl_TexCoord[0].st); vec4 noisevec = vec4 (1.0, 1.0, 1.0, 1.0); vec4 grainTexel; vec3 mixedcolor; vec3 N = vec3(0.0,0.0,1.0); // noise float noise_1m = Noise2D(rawpos.xy, 1.0); float noise_5m = Noise2D(rawpos.xy, 5.0); // road type characteristics float rtype_traffic_density = 0.0; float rtype_base_illumination = 0.0; float rtype_traffic_speed = 0.0; int rtype_dual_lane = 0; road_type_mapper (gl_TexCoord[0].st, rtype_traffic_density, rtype_base_illumination, rtype_traffic_speed, rtype_dual_lane); float pf = 0.0; float pf1 = 0.0; ///some generic light scattering parameters vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight; float alt = eye_alt; float effective_scattering = min(scattering, cloud_self_shading); /// BEGIN geometry for light vec3 up = (gl_ModelViewMatrix * vec4(0.0,0.0,1.0,0.0)).xyz; vec3 nVertVec = normalize(vertVec); float dist = length(vertVec); float vertex_alt = max(100.0,dot(up, vertVec) + alt); float vertex_scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt); vec3 lightHorizon = gl_LightSource[0].position.xyz - up * dot(up,gl_LightSource[0].position.xyz); float yprime = -dot(vertVec, lightHorizon); float yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt); float lightArg = (terminator-yprime_alt)/100000.0; float earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4; float mie_angle; if (lightArg < 10.0) {mie_angle = (0.5 * dot(nVertVec, normalize(gl_LightSource[0].position.xyz)) ) + 0.5;} else {mie_angle = 1.0;} float fog_vertex_alt = max(vertex_alt,hazeLayerAltitude); float fog_yprime_alt = yprime_alt; if (fog_vertex_alt > hazeLayerAltitude) { if (dist > 0.8 * avisibility) { fog_vertex_alt = mix(fog_vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist)); fog_yprime_alt = yprime -sqrt(2.0 * EarthRadius * fog_vertex_alt); } } else { fog_vertex_alt = hazeLayerAltitude; fog_yprime_alt = yprime -sqrt(2.0 * EarthRadius * fog_vertex_alt); } float fog_lightArg = (terminator-fog_yprime_alt)/100000.0; float fog_earthShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, fog_yprime_alt) + 0.1; float ct = dot(normalize(up), nVertVec); vec3 relPos = (gl_ModelViewMatrixInverse * vec4 (vertVec,0.0)).xyz; /// END geometry for light /// BEGIN light vec4 light_diffuse; vec4 light_ambient; float intensity; light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0); light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0); light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0); light_diffuse.a = 1.0; light_diffuse = light_diffuse * vertex_scattering; light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33); light_ambient.g = light_ambient.r * 0.4/0.33; light_ambient.b = light_ambient.r * 0.5/0.33; light_ambient.a = 1.0; if (earthShade < 0.5) { intensity = length(light_ambient.rgb); light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade) )); light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade)); intensity = length(light_diffuse.rgb); light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.7,earthShade) )); } vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0); vec3 ecViewDir = (gl_ModelViewMatrix * (ep - vec4(rawpos, 1.0))).xyz; vec3 HV = normalize(normalize(gl_LightSource[0].position.xyz) + normalize(ecViewDir)); /// END light /// BEGIN grain overlay if (grain_texture_enabled ==1) { grainTexel = texture2D(GrainTex, gl_TexCoord[0].st * grain_magnification); texel.rgb = mix(texel.rgb, grainTexel.rgb, grainTexel.a ); } else if (grain_texture_enabled == 2) { grainTexel = texture2D(GrainTex, rawpos.xy * grain_magnification); texel.rgb = mix(texel.rgb, grainTexel.rgb, grainTexel.a ); } /// END grain overlay /// BEGIN procedural textures - cars and snow vec2 roadCoords = gl_TexCoord[0].st; roadCoords.s *=8.0; roadCoords.s = fract(roadCoords.s); vec4 snow_texel = vec4 (0.95, 0.95, 0.95, 1.0); float noise_term = 0.5 * (noise_5m - 0.5); noise_term += 0.5 * (noise_1m - 0.5); snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + 0.5*snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) ); float noise_2000m = 0.0; float noise_10m = 0.0; float snowLaneShape = smoothstep(0.20, 0.28, roadCoords.s) * (1.0-smoothstep(0.42, 0.5, roadCoords.s)); snowLaneShape += smoothstep(0.6, 0.68, roadCoords.s) * (1.0-smoothstep(0.82, 0.9, roadCoords.s)); snow_texel.a *= (1.0 - 0.3* snowLaneShape * rtype_traffic_density); texel.rgb = mix(texel.rgb, snow_texel.rgb, snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, 1.0 * (relPos.z + eye_alt)+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0)); float cTag = 0.0; float cPresent = 0.0; float cSign = 1.0; float total_traffic_density = 0.0; vec4 carMetaTexel; if (road_traffic_enabled == 1) { float cOffset = 0.0; if (roadCoords.s > 0.5) { if (rtype_dual_lane == 0) {cSign = -1.0;} else {cOffset = 5.0;} } if (rtype_dual_lane == 1) {cSign = -1.0;} cSign *= road_traffic_direction; total_traffic_density = road_traffic_density * rtype_traffic_density * road_traffic_variation; float cCoord = roadCoords.t + cOffset; cCoord += 0.3 * osg_SimulationTime * cSign * rtype_traffic_speed * (1.0 - (0.9 * smoothstep(1.0, 2.5, total_traffic_density))); cCoord *= 5.0; cTag = fract(cCoord); float cDomain = cCoord - cTag; float cRnd = rand2D(vec2 (cDomain, cSign)); cPresent = 0.0; float cDisc = 0.2 * total_traffic_density; if (cRnd > 1.0 - cDisc) {cPresent = 1.0;} float cColorRnd = (cRnd - 1.0 + cDisc)/ max(cDisc, 0.05); float cColorRnd2 = rand2D(vec2 (cDomain, 0.5)); float cColumn = (cColorRnd2 * 16.0) - fract(cColorRnd2 * 16.0); float cRow = (rand2D(vec2 (cDomain, 1.5)) * 2.0); cRow = cRow- fract(cRow); //cRow = 0.0; vec3 cColor = vec3 (0.8 * (1.0 - cColorRnd), 0.8 * 2.0 * (0.5 - abs(cColorRnd - 0.5)) , 0.8 * cColorRnd); cColor *= cColorRnd2; float cPos = cTag; if (cSign > 0.0) {cPos = 1.0 - cPos;} float cShape = smoothstep(0.0, 0.05, cPos) * (1.0-smoothstep(0.35, 0.4, cPos)); float ctPos; if (roadCoords.s < 0.5) {ctPos = clamp(5.0 * (roadCoords.s - 0.25), 0.0,1.0); } else {ctPos = clamp(5.0 * (roadCoords.s - 0.65), 0.0,1.0); } float clPos = cPos;// + 0.45; vec4 carTexel = texture2D(CarTex, vec2((ctPos + cColumn) / 16.0 , ((clPos + cRow) / 2.0) )); carMetaTexel = texture2D(CarMetaTex, vec2((ctPos + cColumn) / 16.0 , ((clPos + cRow) / 2.0) )); float laneShape = smoothstep(0.25, 0.28, roadCoords.s) * (1.0-smoothstep(0.42, 0.45, roadCoords.s)); laneShape += smoothstep(0.65, 0.68, roadCoords.s) * (1.0-smoothstep(0.82, 0.85, roadCoords.s)); cShape *= laneShape; //texel.rgb = mix(texel.rgb, cColor, cPresent * cShape); texel.rgb = mix(texel.rgb, carTexel.rgb, cPresent * carTexel.a * laneShape); //texel.rgb = mix(texel.rgb, vec3 (1.0, 0.0, 0.0) * cColorRnd2, 0.3); } /// END procedural cars vec3 reflVecN; ///BEGIN bump if (nmap_enabled > 0){ N = nmap.rgb * 2.0 - 1.0; // this is exact only for viewing under 90 degrees but much faster than the real solution reflVecN = normalize (N.x * VTangent + N.y * VBinormal + N.z * reflVec); N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal); if (nmap_dds > 0) N = -N; } else { N = normalize(VNormal); reflVecN = reflVec; } ///END bump vec4 reflection = textureCube(Environment, reflVecN ); vec3 viewVec = normalize(vViewVec); float v = abs(dot(viewVec, normalize(VNormal)));// Map a rainbowish color vec4 fresnel = texture2D(ReflGradientsTex, vec2(v, 0.75)); vec4 rainbow = texture2D(ReflGradientsTex, vec2(v, 0.25)); //float nDotVP = max(0.0, dot(N, normalize(gl_LightSource[0].position.xyz))); float nDotVP = max(0.0, dot(N, normalize(gl_LightSource[0].position.xyz))); //float nDotHV = max(0.0, dot(N, normalize(gl_LightSource[0].halfVector.xyz))); float nDotHV = max(0.0, dot(N,HV)); //glare on the backside of tranparent objects //if ((gl_FrontMaterial.diffuse.a < 1.0 || texel.a < 1.0) // && dot(N, normalize(gl_LightSource[0].position.xyz)) < 0.0) { // nDotVP = max(0.0, dot(-N, normalize(gl_LightSource[0].position.xyz)) * (1.0 -texel.a) ); // nDotHV = max(0.0, dot(-N, HV) * (1.0 -texel.a) ); // } float nDotVP1 = 0.0; float nDotHV1 = 0.0; // try specular reflection of sky irradiance nDotVP1 = max(0.0, dot(N, up)); nDotHV1 = max(0.0, dot(N, normalize(normalize(up) + normalize(-vertVec)))); if (nDotVP == 0.0) {pf = 0.0;} else {pf = pow(nDotHV, gl_FrontMaterial.shininess);} if (nDotVP1 == 0.0) {pf1 = 0.0;} else {pf1 = pow(nDotHV1, 0.5*gl_FrontMaterial.shininess);} if (cloud_shadow_flag == 1) { light_diffuse = light_diffuse * shadow_func(relPos.x, relPos.y, 1.0, dist); } vec3 secondary_light = vec3 (0.0,0.0,0.0); if (use_searchlight == 1) { secondary_light += searchlight(); } if (use_landing_light == 1) { secondary_light += landing_light(landing_light1_offset, landing_light3_offset); } if (use_alt_landing_light == 1) { secondary_light += landing_light(landing_light2_offset, landing_light3_offset); } float shadowmap = getShadowing(); vec4 Diffuse = light_diffuse * nDotVP * shadowmap; Diffuse.rgb += secondary_light * light_distance_fading(dist); if (use_IR_vision) { Diffuse.rgb = max(Diffuse.rgb, vec3 (0.5, 0.5, 0.5)); } vec4 Specular = gl_FrontMaterial.specular * light_diffuse * pf + gl_FrontMaterial.specular * light_ambient * pf1 * shadowmap; Specular+= gl_FrontMaterial.specular * pow(max(0.0,-dot(N,nVertVec)),gl_FrontMaterial.shininess) * vec4(secondary_light,1.0); //vec4 color = gl_Color + Diffuse * gl_FrontMaterial.diffuse; vec4 color = Diffuse;// * gl_FrontMaterial.diffuse; color = clamp( color, 0.0, 1.0 ); //////////////////////////////////////////////////////////////////// //BEGIN reflect //////////////////////////////////////////////////////////////////// if (refl_enabled > 0){ float reflFactor = 0.0; float transparency_offset = clamp(refl_correction, -1.0, 1.0);// set the user shininess offset if(refl_map > 0){ // map the shininess of the object with user input //float pam = (map.a * -2) + 1; //reverse map reflFactor = reflmap.a + transparency_offset; } else if (nmap_enabled > 0) { // set the reflectivity proportional to shininess with user input reflFactor = gl_FrontMaterial.shininess * 0.0078125 * nmap.a + transparency_offset; } else { reflFactor = gl_FrontMaterial.shininess* 0.0078125 + transparency_offset; } // enhance low angle reflection by a fresnel term float fresnel_enhance = (1.0-smoothstep(0.0,0.4, dot(N,-nVertVec))) * refl_fresnel_factor; reflFactor+=fresnel_enhance; reflFactor = clamp(reflFactor, 0.0, 1.0); // add fringing fresnel and rainbow effects and modulate by reflection vec4 reflcolor = mix(reflection, rainbow, refl_rainbow * v); //vec4 reflcolor = reflection; vec4 reflfrescolor = mix(reflcolor, fresnel, refl_fresnel * v); vec4 noisecolor = mix(reflfrescolor, noisevec, refl_noise); //vec4 raincolor = vec4(noisecolor.rgb * reflFactor, 1.0); vec4 raincolor = vec4(noisecolor.rgb, 1.0); raincolor += Specular; raincolor *= light_diffuse; if (refl_type == 1) {mixedcolor = mix(texel, raincolor, reflFactor).rgb;} else if (refl_type == 2) {mixedcolor = ((texel +(reflcolor * reflFactor))-(0.5*reflFactor)).rgb;} } else { mixedcolor = texel.rgb; } ///////////////////////////////////////////////////////////////////// //END reflect ///////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// //begin DIRT ////////////////////////////////////////////////////////////////////// if (dirt_enabled >= 1){ vec3 dirtFactorIn = vec3 (dirt_r_factor, dirt_g_factor, dirt_b_factor); vec3 dirtFactor = reflmap.rgb * dirtFactorIn.rgb; //dirtFactor.r = smoothstep(0.0, 1.0, dirtFactor.r); mixedcolor.rgb = mix(mixedcolor.rgb, dirt_r_color, smoothstep(0.0, 1.0, dirtFactor.r)); if (dirt_multi > 0) { //dirtFactor.g = smoothstep(0.0, 1.0, dirtFactor.g); //dirtFactor.b = smoothstep(0.0, 1.0, dirtFactor.b); mixedcolor.rgb = mix(mixedcolor.rgb, dirt_g_color, smoothstep(0.0, 1.0, dirtFactor.g)); mixedcolor.rgb = mix(mixedcolor.rgb, dirt_b_color, smoothstep(0.0, 1.0, dirtFactor.b)); } } ////////////////////////////////////////////////////////////////////// //END Dirt ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// //begin WETNESS ////////////////////////////////////////////////////////////////////// if (rain_enabled >0.0) { texel.rgb = texel.rgb * (1.0 - 0.6 * wetness); float rain_factor = 0.0; float rain_orientation = max(dot(VNormal, up),0.0); if ((rain_norm > 0.0) && (rain_orientation > 0.0)) { rain_factor += DotNoise2D(rawpos.xy, 0.2 ,0.5, rain_norm) * abs(sin(6.0*osg_SimulationTime)); rain_factor += DotNoise2D(rawpos.xy, 0.3 ,0.4, rain_norm) * abs(sin(6.0*osg_SimulationTime + 2.094)); rain_factor += DotNoise2D(rawpos.xy, 0.4 ,0.3, rain_norm)* abs(sin(6.0*osg_SimulationTime + 4.188)); } // secondary reflection of sky irradiance in water film float fresnelW = ((0.8 * wetness) ) * (1.0-smoothstep(0.0,0.4, dot(N,-nVertVec) * 1.0 - 0.2 * rain_factor * wetness)); float sky_factor = (1.0-ct*ct); vec3 sky_light = vec3 (1.0,1.0,1.0) * length(light_diffuse.rgb) * (1.0-effective_scattering); Specular.rgb += sky_factor * fresnelW * sky_light; } ///////////////////////////////////////////////////////////////////// //end WETNESS ////////////////////////////////////////////////////////////////////// // set ambient adjustment to remove bluiness with user input float ambient_offset = clamp(amb_correction, -1.0, 1.0); vec4 ambient = gl_LightModel.ambient + light_ambient; vec4 ambient_Correction = vec4(ambient.rg, ambient.b * 0.6, 1.0) * ambient_offset ; ambient_Correction = clamp(ambient_Correction, -1.0, 1.0); color += ambient; color.a = texel.a * alpha; vec4 fragColor = vec4(color.rgb * mixedcolor + ambient_Correction.rgb, color.a); fragColor += Specular * nmap.a; ////////////////////////////////////////////////////////////////////// // BEGIN procedural lightmap ////////////////////////////////////////////////////////////////////// vec3 pLMColor = streetlight_color; float pLMIntensity = smoothstep(0.0, 0.4, roadCoords.s) * (1.0 - smoothstep(0.6, 1.0, roadCoords.s)); pLMIntensity = 0.25 * rtype_base_illumination * (1.0+ streetlight_factor) + 0.1 * max(0.0,sin(4.0 * roadCoords.t)) * streetlight_factor; pLMIntensity = clamp(pLMIntensity, 0.0, 1.0); if (gl_FrontMaterial.diffuse.r == 0.0) {pLMIntensity =0.0;} pLMColor *= pLMIntensity; if (road_traffic_enabled == 1) { float viewAngleFactor = smoothstep(-0.05, 0.0, cSign * dot(normalize(VBinormal), nVertVec)); vec3 pCLColor = vec3 (0.95, 1.0, 1.0); vec3 pTLColor = vec3 (0.95, 0.0, 0.0); // mean illumination by car headlights pLMColor = pLMColor + 0.2 * min(1.0,total_traffic_density) * pCLColor; //float pCLIntensity = smoothstep(0.4, 0.6, cTag) * (1.0-smoothstep(0.6, 0.8, cTag)); //float laneFact = smoothstep(0.25, 0.3, roadCoords.s) * (1.0-smoothstep(0.3, 0.35, roadCoords.s)); //laneFact += smoothstep(0.35, 0.4, roadCoords.s) * (1.0-smoothstep(0.4, 0.45, roadCoords.s)); //laneFact += smoothstep(0.65, 0.7, roadCoords.s) * (1.0-smoothstep(0.7, 0.75, roadCoords.s)); //laneFact += smoothstep(0.75, 0.8, roadCoords.s) * (1.0-smoothstep(0.8, 0.85, roadCoords.s)); //pCLIntensity = pCLIntensity * laneFact * cPresent; float pCLIntensity, pTLIntensity; if (cSign == -1.0) { pCLIntensity = carMetaTexel.r * cPresent * smoothstep(0.45, 0.55, cTag) * viewAngleFactor ; pCLIntensity += 0.85 * carMetaTexel.b * cPresent * smoothstep(0.45, 0.55, cTag); pTLIntensity = carMetaTexel.r * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)) * (1.0 - viewAngleFactor); pTLIntensity += 0.85 * carMetaTexel.b * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)); } else { pCLIntensity = carMetaTexel.r * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)) *viewAngleFactor ; pCLIntensity += 0.85 * carMetaTexel.b * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)); pTLIntensity = carMetaTexel.r * cPresent * smoothstep(0.45, 0.55, cTag) * (1.0 - viewAngleFactor); pTLIntensity += 0.85 * carMetaTexel.b * cPresent * smoothstep(0.45, 0.55, cTag); } //pCLColor *= pCLIntensity; //if (cSign == 1.0) // { // pTLIntensity = smoothstep(0.9, 0.94, cTag) * (1.0-smoothstep(0.96, 1.0, cTag)); // } //else // { // pTLIntensity = smoothstep(0.0, 0.04, cTag) * (1.0-smoothstep(0.06, 0.1, cTag)); // } //pTLIntensity = pTLIntensity * laneFact * cPresent * (1.0 - viewAngleFactor); pCLColor = pCLColor * pCLIntensity + pTLColor * pTLIntensity; pLMColor = clamp(pLMColor, 0.0, 1.0); pLMColor = max(pLMColor,pCLColor); } //fragColor.rgb = max(fragColor.rgb, pLMColor * gl_FrontMaterial.diffuse.rgb * smoothstep(0.0, 1.0, mixedcolor*.5 + pLMColor*.5)); fragColor.rgb = max(fragColor.rgb, pLMColor * smoothstep(0.0, 1.0, mixedcolor*.5 + pLMColor*.5)); ////////////////////////////////////////////////////////////////////// // END procedural lightmap ////////////////////////////////////////////////////////////////////// /// BEGIN fog amount float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; float eqColorFactor; float delta_z = hazeLayerAltitude - eye_alt; float mvisibility = min(visibility, avisibility); if (dist > 0.04 * mvisibility) { if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,mvisibility) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } transmission_arg = (dist-distance_in_layer)/avisibility; if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/visibility); eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = fog_func(transmission_arg, alt); if (eqColorFactor < 0.2) eqColorFactor = 0.2; } else { eqColorFactor = 1.0; transmission = 1.0; } /// END fog amount /// BEGIN fog color vec3 hazeColor = get_hazeColor(fog_lightArg); float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0); float lightIntensity = length(hazeColor * effective_scattering) * rShade; if (transmission< 1.0) { if (fog_lightArg < 10.0) { intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } intensity = length(hazeColor); hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); hazeColor.r = hazeColor.r * 0.83; hazeColor.g = hazeColor.g * 0.9; float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,fog_earthShade) )); hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); float shadow = mix( min(1.0 + dot(VNormal,gl_LightSource[0].position.xyz),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); } else { hazeColor = vec3 (1.0, 1.0, 1.0); } /// END fog color fragColor = clamp(fragColor, 0.0, 1.0); hazeColor = clamp(hazeColor, 0.0, 1.0); ///BEGIN Rayleigh fog /// // Rayleigh color shift due to out-scattering float rayleigh_length = 0.5 * avisibility * (2.5 - 1.9 * air_pollution)/alt_factor(eye_alt, eye_alt+relPos.z); float outscatter = 1.0-exp(-dist/rayleigh_length); fragColor.rgb = rayleigh_out_shift(fragColor.rgb,outscatter); vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity; float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z); fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength); /// END Rayleigh fog // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor *= eqColorFactor * fog_earthShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); fragColor.rgb = mix(hazeColor +secondary_light * fog_backscatter(mvisibility), fragColor.rgb,transmission); fragColor.rgb = filter_combined(fragColor.rgb); gl_FragColor = fragColor; }