// -*-C++-*- // written by Thorsten Renk, Oct 2015 varying vec4 diffuse_term; varying vec3 normal; varying vec3 relPos; uniform sampler2D texture; uniform samplerCube cube_texture; varying float yprime_alt; varying float mie_angle; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float cloud_self_shading; uniform float angle; uniform vec3 offset_vec; uniform vec3 scale_vec; uniform int quality_level; uniform int tquality_level; uniform int use_searchlight; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float eShade; float fog_func (in float targ, in float alt); float alt_factor(in float eye_alt, in float vertex_alt); float light_distance_fading(in float dist); float fog_backscatter(in float avisibility); vec3 get_hazeColor(in float light_arg); float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility void main() { vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec4 color = gl_Color; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; float effective_scattering = min(scattering, cloud_self_shading); eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); vec4 light_specular = gl_LightSource[0].specular * (eShade - 0.1); // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(n); // lookup on the opacity map vec3 light_vec = normalize((gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz); //vec3 light_vec = vec3 (-1.0,0.0,0.0); vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0); vec3 scaled_pos = relPos + ep.xyz; //vec3 lookup_vec = normalize(- normalize(light_vec) + relPos); scaled_pos -= offset_vec; float rangle = radians(angle); mat2 rotMat = mat2 (cos(rangle), -sin(rangle), sin(rangle), cos(rangle)); scaled_pos.xy *=rotMat; scaled_pos /= scale_vec; //vec3 lookup_pos = dot(base1,scaled_pos) * base1 + dot(base2,scaled_pos) * base2; vec3 lookup_pos = scaled_pos - light_vec * dot(light_vec, scaled_pos); vec3 lookup_vec = normalize(normalize(light_vec) + lookup_pos); vec4 opacity = textureCube(cube_texture, lookup_vec); NdotL = dot(n, lightDir); //NdotL = dot(n, (gl_ModelViewMatrix * vec4 (light_vec,0.0)).xyz); if (NdotL > 0.0) { diffuse_term.rgb += 2.0 * diffuse_term.rgb * (1.0 - opacity.a); color += diffuse_term * NdotL * opacity; NdotHV = max(dot(n, halfVector), 0.0); if (gl_FrontMaterial.shininess > 0.0) specular.rgb = (gl_FrontMaterial.specular.rgb * light_specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess)); } color.a = diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. //color = clamp(color, 0.0, 1.0); texel = texture2D(texture, gl_TexCoord[0].st); fragColor = color * texel + specular; //fragColor.rgb = vec3(1.0,1.0,1.0) * (1.0 - opacity.a); gl_FragColor = fragColor; }