// -*-C++-*- // written by Thorsten Renk, Oct 2011, based on default.frag varying vec3 relPos; uniform sampler2D texture; varying float yprime_alt; varying float is_shadow; varying float autumn_flag; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float ground_scattering; uniform float cloud_self_shading; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float dust_cover_factor; uniform float air_pollution; uniform float landing_light1_offset; uniform float landing_light2_offset; uniform float landing_light3_offset; uniform float cseason; uniform int use_searchlight; uniform int use_landing_light; uniform int use_alt_landing_light; uniform int quality_level; uniform int tquality_level; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float mie_angle; float light_distance_fading(in float dist); float fog_backscatter(in float avisibility); float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt); vec3 searchlight(); vec3 landing_light(in float offset, in float offsetv); vec3 get_hazeColor(in float light_arg); float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility float tree_fog_func (in float targ) { float fade_mix; // for large altitude > 30 km, we switch to some component of quadratic distance fading to // create the illusion of improved visibility range targ = 1.25 * targ * smoothstep(0.07,0.1,targ); // need to sync with the distance to which terrain is drawn if (alt < 30000.0) {return exp(-targ - targ * targ * targ * targ);} else if (alt < 50000.0) { fade_mix = (alt - 30000.0)/20000.0; return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0)); } else { return exp(- targ * targ - pow(targ,4.0)); } } float rand2D(in vec2 co){ return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453); } float simple_interpolate(in float a, in float b, in float x) { return a + smoothstep(0.0,1.0,x) * (b-a); } float interpolatedNoise2D(in float x, in float y) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float v1 = rand2D(vec2(integer_x, integer_y)); float v2 = rand2D(vec2(integer_x+1.0, integer_y)); float v3 = rand2D(vec2(integer_x, integer_y+1.0)); float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0)); float i1 = simple_interpolate(v1 , v2 , fractional_x); float i2 = simple_interpolate(v3 , v4 , fractional_x); return simple_interpolate(i1 , i2 , fractional_y); } float Noise2D(in vec2 coord, in float wavelength) { return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength); } void main() { if (is_shadow > 1.0) {discard;} vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); vec3 lightDir = gl_LightSource[0].position.xyz; float intensity; mie_angle = gl_Color.a; vec4 texel = texture2D(texture, gl_TexCoord[0].st); // angle with horizon float dist = length(relPos); float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // determine tree shadow properties if (is_shadow>0.0) { if (ct > -0.1) {discard;} // we eliminate shadows above the camera to avoid artifacts float illumination = length(gl_Color.rgb); texel = vec4 (0.1,0.1,0.1,texel.a); texel.a *= illumination;// * smoothstep(0.0, 0.2, is_shadow); texel.a *=0.6 * smoothstep(0.5,0.8,scattering); texel.a = min(0.8, texel.a); } float effective_scattering = min(scattering, cloud_self_shading); if (quality_level > 3) { // seasonal color changes if ((cseason < 1.5)&& (autumn_flag > 0.0) && (is_shadow <0.0)) { texel.r = min(1.0, (1.0 + 5.0 *cseason * autumn_flag ) * texel.r); texel.b = max(0.0, (1.0 - 8.0 * cseason) * texel.b); } // mix dust vec4 dust_color = vec4 (0.76, 0.71, 0.56, texel.a); texel = mix(texel, dust_color, clamp(0.6 * dust_cover_factor ,0.0, 1.0) ); } // ALS secondary light sources vec3 secondary_light = vec3 (0.0,0.0,0.0); if ((quality_level>5) && (tquality_level>5)) { if (use_searchlight == 1) { secondary_light += searchlight(); } if (use_landing_light == 1) { secondary_light += landing_light(landing_light1_offset, landing_light3_offset); } if (use_alt_landing_light == 1) { secondary_light += landing_light(landing_light2_offset, landing_light3_offset); } } vec4 fragColor = vec4 (gl_Color.rgb +secondary_light * light_distance_fading(dist),1.0) * texel; // Rayleigh haze float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // Rayleigh color shift due to in-scattering if ((quality_level > 5) && (tquality_level > 5)) { float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0); float lightIntensity = length(hazeColor * effective_scattering) * rShade; vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity; float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z); fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength); } // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; if (dist > max(40.0, 0.07 * min(visibility,avisibility))) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // blur of the haze layer edge float blur_thickness = 50.0; float cphi = dot(vec3(0.0, 1.0, 0.0), relPos)/dist; float ctlayer; float ctblur = 0.035 ; float blur_dist; if ((abs(delta_z) < 400.0)&&(quality_level>5)&&(tquality_level>5)) { ctlayer = delta_z/dist-0.01 + 0.02 * Noise2D(vec2(cphi,1.0),0.1) -0.01; blur_dist = dist * (1.0-smoothstep(0.0,300.0,-delta_z)) * smoothstep(-400.0,-200.0, -delta_z); blur_dist = blur_dist * smoothstep(ctlayer-4.0*ctblur, ctlayer-ctblur, ct) * (1.0-smoothstep(ctlayer+0.5*ctblur, ctlayer+ctblur, ct)); distance_in_layer = max(distance_in_layer, blur_dist); } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; //float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt); if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/visibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = tree_fog_func(transmission_arg); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; // now dim the light for haze float eShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1; // Mie-like factor if (lightArg < 10.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // determine the right mix of transmission and haze hazeColor = clamp(hazeColor,0.0,1.0); fragColor.rgb = mix(eqColorFactor * hazeColor * eShade + secondary_light * fog_backscatter(avisibility), fragColor.rgb,transmission); gl_FragColor = fragColor; } else // if dist < 40.0 no fogging at all { gl_FragColor = fragColor; } //gl_FragColor.rgb = gl_SecondaryColor.rgb; }