

FlightGear Flight Simulator – Installation and
Getting Started

Michael Basler (pmb@epost.de) and Martin Spott (Martin.Spott@uni-duisburg.de)

including contributions by
Bernhard Buckel (buckel@mail.uni-wuerzburg.de),

Curt Olson (curt@flightgear.org),
Jon Berndt (jsb@hal-pc.org),

Darrell Walisser dwaliss1@purdue.edu,
and others

Getting Started version 0.51
February, 16th, 2002

This documentation was written forFlightGear version 0.7.9.

mailto:pmb@epost.de
mailto:Martin.Spott@uni-duisburg.de
mailto:buckel@mail.uni-wuerzburg.de
mailto:curt@flightgear.org
mailto:jsb@hal-pc.org
mailto:dwaliss1@purdue.edu

Contents

I Installation 10

1 Want to have a free flight? TakeFlightGear! 11
1.1 Yet another Flight Simulator? . 11
1.2 System requirements . 14
1.3 Which version should I use? . 15
1.4 Flight models . 16
1.5 To whom this guide is addressed and how it is organized 17

2 Building the plane: Compiling the program 19
2.1 Getting a development environment under Windows 20
2.2 CompilingFlightGear under Linux/Windows 21
2.3 CompilingFlightGear under Mac OS 10.1 24
2.4 Compiling on other systems . 27
2.5 Installing the base package . 27
2.6 For test pilots only: Building the CVS snapshots 28

3 Preflight: Installing FlightGear 29
3.1 Installing the binary distribution on a Windows system 29
3.2 Installing the binary distribution on a Macintosh system 30
3.3 Installing the binary distribution on a Debian Linux system 30
3.4 Installing the binary distribution on a SGI IRIX system 31
3.5 Installing add-on scenery . 31
3.6 Installing documentation . 32

II Flying with FlightGear 33

4 Takeoff: How to start the program 34
4.1 Launching the simulator under Unix/Linux 34
4.2 Launching the simulator under Windows 35

4

4.3 Launching the simulator under Mac OS X 36
4.4 Command line parameters . 36

4.4.1 General Options . 36
4.4.2 Features . 38
4.4.3 Flight model . 38
4.4.4 Aircraft model directory (Only for the UIUC Flight Dy-

namics Model) . 39
4.4.5 Initial Position and Orientation 40
4.4.6 Rendering Options . 41
4.4.7 HUD Options . 42
4.4.8 Time Options . 42
4.4.9 Network Options . 43
4.4.10 Route/Waypoint Options 43
4.4.11 IO Options . 43
4.4.12 Debugging options . 44
4.4.13 Joystick properties . 44

5 In-flight: All about instruments, keystrokes and menus 47
5.1 Starting the engine . 47
5.2 Keyboard controls . 48
5.3 Menu entries . 52
5.4 The Instrument Panel . 54
5.5 The Head Up Display . 57
5.6 Mouse controlled actions . 58
5.7 Some further reading for pilot students 59

III Appendices 61

A Missed approach: If anything refuses to work 62
A.1 FlightGear Problem Reports . 62
A.2 General problems . 63
A.3 Potential problems under Linux 64
A.4 Potential problems under Windows 65

B Some words on OpenGL graphics drivers 67
B.1 NVIDIA chip based cards under Linux 68
B.2 NVIDIA chip based cards under Windows 68
B.3 3DFX chip based cards under Windows 68
B.4 An alternative approach for Windows users 69

B.5 3DFX chip based cards under Linux 69
B.6 ATI chip based cards under Linux 69
B.7 Building your own OpenGL support under Linux 69
B.8 OpenGL on MacIntosh . 73

C Landing: Some further thoughts before leaving the plane 75
C.1 A not so Short History ofFlightGear 75
C.2 Those, who did the work . 80
C.3 What remains to be done . 88

Preface

FlightGear is a free Flight Simulator developed cooperatively over the Internet by
a group of Flight Simulation and Programming Enthusiasts. This ”Installation and
Getting Started” is meant to give beginners a guide in gettingFlightGear up and
running. It is not intended to provide complete documentation of all the features
and add-ons ofFlightGear but, instead, focuses on those aspects necessary to get
into the air.

This guide is split into two parts. The first part describes how to install the
program while the second part details on how to actually fly withFlightGear.

The chapters concentrate on the following aspects:

Part I: Installation

Chapter 1,Want to have a free flight? TakeFlightGear, introduces the concept,
describes the system requirements, and classifies the different versions available.

Chapter 2,Building the plane: Compiling the program, explains how to build
(compile and link) the simulator. Depending on your platform this may or may
not be required. Generally, there will be executable programs (binaries) available
for several platforms. Those on such systems who want to take off immediately,
without going through the potentially troublesome process of compiling, may skip
this Chapter.

In Chapter 3,Preflight: InstallingFlightGear, you will find instructions for in-
stalling the binaries in case you did not build them yourself as specified in the
previous Chapter. You will need to install scenery, textures, and other support files
collected in the base package.

Part II: Flying with FlightGear

The following Chapter 4,Takeoff: How to start the program, describes how to actu-
ally start the installed program. It includes an overview on the numerous command
line options as well as configuration files.

Chapter 5,In-flight: All about instruments, keystrokes and menus, describes how
to operate the program, i. e. how to actually fly withFlightGear. This includes

7

a (hopefully) complete list of pre-defined keyboard commands, an overview on
the menu entries, detailed descriptions on the instrument panel and HUD (head up
display), as well as hints on using the mouse functions.

In Appendix A,Missed approach: If anything refuses to work, we try to help you
work through some common problems faced when usingFlightGear.

The Appendix B,OpenGL graphics drivers, describes some special problems you
may encounter in case your system lacks support for the OpenGL graphics API
OpenGL whichFlightGear is based on.

In the final Appendix C,Landing: Some further thoughts before leaving the plane,
we would like to give credit to those who deserve it, sketch an overview on the
development ofFlightGearand point out what remains to be done.

Accordingly, we suggest reading the Chapters as follows:

Installation
Users of binary distributions (notably under Windows): 3
Installation under Linux/UNIX: 2, 3
Installation under MacIntosh: 3
Operation
Program start (all users): 4
Keycodes, Panel, Mouse. . . (all users): 5
Troubleshooting
General issues: A
Graphics problems: B
Optionally 1, C

While this introductory guide is meant to be self contained, we strongly suggest
having a look into further documentation, especially in case of trouble:

• For additional hints on troubleshooting and more,please read the FAQ

http://www.flightgear.org/Docs/FlightGear-FAQ.html,

The FAQ contains a host of valuable information, especially on rapidly chang-
ing flaws and additional reading, thus we strongly suggest consulting it in
conjunction with our guide.

• A handyleafleton operation for printout is available at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html,

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

• Additional user documentation on special aspects is available within the base
package under the directory/FlightGear/Docs .

Finally:

We know, most people hate reading manuals. If you are sure the graphics driver
for your card supports OpenGL (check documentation; for instance all NVIDIA
Windows and Linux drivers for TNT/TNT2/Geforce/Geforce2/Geforce3 do) and if
you are using one of the following operating systems:

• Windows 95/98/ME/NT/2000/XP,

• Macintosh Mac OSX

• Linux

• SGI Irix

you can possibly skip at least Part I of this manual and exploit the pre-compiled
binaries. These as well as instructions on how to set them up, can be found at

http://www.flightgear.org/Downloads/.

In case you are runningFlightGear on Linux, you may also be able to get bina-
ries bundled with your distribution. Several vendors already includeFlightGear
binaries into their distributions.

Just download them, install them according to the description and run them via
the installedrunfgfs script or the batch filerunfgfs.bat , respectively.

There is no guarantee for this approach to work, though. If it doesn’t, don’t
give up! Have a closer look through this guide notably Section 3 and be sure to
check out the FAQ.

http://www.flightgear.org/Downloads/

Part I

Installation

10

Chapter 1

Want to have a free flight? Take
FlightGear!

1.1 Yet another Flight Simulator?

Did you ever want to fly a plane yourself, but lacked the money or ability to do so?
Are you a real pilot looking to improve your skills without having to take off? Do
you want to try some dangerous maneuvers without risking your life? Or do you
just want to have fun with a more serious game not killing any people? If any of
these questions applies, PC flight simulators are just for you.

You already may have some experience using Microsoft’sc© Flight Simulator
or any other of the commercially available PC flight simulators. As the price tag of
those is usually within the $50 range buying one of them should not be a serious
problem given that running any serious PC flight simulator requires a hardware
within the $1500 range, despite dropping prices, at least.

Why then that effort of spending hundreds or thousands of hours of program-
ming to build a free simulator? Obviously there must be good reason to do so:

• All of the commercial programs have a serious drawback: They are made
by a small group of developers defining their properties - often quite inert
and not listening too much to the customer. Anyone ever trying to contact
Microsoft will immediately agree.

• Commercial PC flight simulators usually try to cover a market segment as
broad as possible. For obvious reason, most of them want to serve the serious
pilot as well as the beginner and the gamer. The result is a compromise. As
FlightGear is free, there is no need for such compromise; it just can be given
the properties its users want. It defines itself via building.

11

• Building a flight simulator is a challenge to the art of programming. Con-
tributing to that project makes you belong to those being able to contribute
to serious, ambitious and advanced software projects.

• It is fun. Not only is it fun to write the code (. . . or documentation. . .) but
also to belong to that – temporarily changing – club of clever people on the
net having discussed, struggled and finally succeeded in creating that project.
Even reading theFlightGear mailing lists is informative and fun for itself.

The above-mentioned points makeFlightGear superior to its competitors in
several respect.FlightGear aims to be a civilian, multi-platform, open, user-
supported, user-extensible platform.

Fig. 1: FlightGear under UNIX: Bad approach to San Francisco International - by
one of the authors of this manual. . .

• Civilian: The project is primarily aimed at civilian flight simulation. It
should be appropriate for simulating general aviation as well as civilian air-
craft. It is not a shoot’m-up game. However, in keeping with the open con-
cept of development, this naturally does not exclude someone taking the code
and integrating say weapon systems, for instance.

• Multi-platform: The developers are attempting to keep the code as platform-
independent as possible. This is based on their observation that people in-
terested in flight simulations run quite a variety of computer hardware and
operating systems. The present code supports the following Operating Sys-
tems:

– Linux (any distribution and platform),

– Windows NT/2000/XP (Intel/AMD platform),

– Windows 95/98/ME,

– BSD UNIX,

– SGI IRIX,

– Sun-OS,

– Macintosh.

At present, there is no known flight simulator – commercial or free – sup-
porting such a broad range of platforms.

• Open: The project is not restricted to a static or elite cadre of developers.
Anyone who feels he or she is able to contribute is most welcome. The code
(including documentation) is copyrighted under the terms of the GPL (Gnu
Public License).

The GPL is often misunderstood. In simple terms it states that you can copy
and freely distribute the program(s) so licensed. You can modify them if
you like. You are even allowed to charge as much money for the distribution
of the modified or original program as you want. However, you must dis-
tribute it complete with the entire source code and it must retain the original
copyrights. In short:

”You can do anything with the software except make it non-free”.

The full text of the GPL can be obtained from

http://www.gnu.org/copyleft/gpl.html.

• User-supported, user-extensible:Contrary to various commercial simula-
tors available, scenery and aircraft format, internal variables, etc. are user
accessible and documented from the beginning. Even without an explicit de-
velopment documentation (which naturally has to be written at some point)
this is guaranteed by supplying the source code. It is the goal of the devel-
opers to build a basic engine to which scenery designers, panel engineers,

http://www.gnu.org/copyleft/gpl.html

maybe adventure or ATC routine writers, sound artists, and others can (and
are solicited to) add. It is our hope, that the project will benefit from the
creativity and ideas of the hundreds of talented ”simmers” around the world.

Without doubt, the success of the Linux project initiated by Linus Torvalds
inspired several of the developers. Not only has it shown that distributed develop-
ment of even highly sophisticated software projects over the Internet is possible.

1.2 System requirements

In comparison to other recent flight simulators the system requirements forFlight-
Gearare not extravagant. A decent PII/400 or something in that range should be
sufficient, given you have a proper 3-D graphics card. On the other hand, any
modern UNIX-type workstation with a 3D graphics card will handleFlightGear
as well.

One important prerequisite for runningFlightGear is a graphics card whose
driver supports OpenGL. If you don’t know what OpenGL is, the overview given
at the OpenGL web site

http://www.opengl.org

says it best: ”Since its introduction in 1992, OpenGL has become the industry’s
most widely used and supported 2-D and 3-D graphics application programming
interface (API)...”.

FlightGear does not run (and will never run) on a graphics board supporting
Direct3D only. Contrary to openGL, Direct3D is a proprietary interface, being
restricted to the Windows operating system.

You may be able to runFlightGear on a computer that features a 3-D video
card not supporting hardware accelerated OpenGL – and even on systems with-
out 3-D graphics hardware at all. However, the absence of hardware accelerated
OpenGL support can force even the fastest machine to its knees. The typical signal
for missing hardware acceleration are frame rates below 1 frame per second.

Any more recent 3-D graphics featuring hardware OpenGL will do. For Win-
dows video card drivers that support OpenGL, visit the home page of your video
card manufacturer. You should note, that sometimes OpenGL drivers are provided
by the manufacturers of the graphics chip instead of by the makers of the board.
If you are going to buy a graphics card for runningFlightGear, one based on a
NVIDIA chip (TNT X/Geforce X) might be a good choice.

To install the executable and basic scenery, you will need around 50 MB of
free disk space. In case you want/have to to compile the program yourself you

http://www.opengl.org

will need additional about 500 MB for the source code and for temporary files cre-
ated during compilation. This does not yet include the development environment,
which possibly may have to be installed under Windows yet, and which amounts
to additional around 300 MB, depending on the installed packages.

For the sound effects any capable sound card should suffice. Based on its
flexible concept,FlightGear supports a wide range of joysticks or yokes as well
esd rudder pedals under Linux as well as under Windows.

FlightGear is being developed primarily under Linux, a free UNIX clone (to-
gether with lots of GNU utilities) developed cooperatively over the Internet in
much the same spirit asFlightGear itself. FlightGear also runs and is partly de-
veloped under several flavors of Windows. BuildingFlightGear is possible on a
Macintosh (OSX) and on several UNIX/X11 workstations, as well. Given you have
a proper compiler installed,FlightGear can be built under all of these platforms.
The primary compiler for all platforms is the free GNU C++ compiler (the Cygnus
compiler under Win32).

If you want to runFlightGear under Mac OS X we suggest a Power PC G3
300 MHz or better. As a graphics card we would suggest an ATI Rage 128 based
card as a minimum. Joysticks are supported under Mac OS 9.x only; there is no
joystick support under Max OSX available (yet).

1.3 Which version should I use?

Concerning theFlightGear source code there exist two branches, a stable one and
a developmental branch. Even version numbers like 0.6, 0.8, and (someday hope-
fully) 1.0 refer to stable releases, while odd numbers like 0.7, 0.9, and so on refer
to developmental releases. The policy is to only do bug fixes in the even versions,
while new features are generally added to odd-numbered versions which, after all
things have stabilized, will become the next stable release with a version number
calculated by adding 0.1.

To add to the confusion, there usually are several versions of the ”unstable”
branch. First, there is a ”latest official release” which the pre-compiled binaries are
based on. It is available from

For developers there exist CVS snapshots of the source code, available from

ftp://www.flightgear.org/pub/flightgear/Devel/Snapshots/.

While theses are quite recent, they may still be sometimes a few days back behind
development. Thus, if you really want to get the very latest and greatest (and, at
times, buggiest) code, you can use a tool called anonymous cvs available from

ftp://ftp.flightgear.org/pub/fgfs/Source/FlightGear-X.X.X.tar.gz
ftp://www.flightgear.org/pub/flightgear/Devel/Snapshots/

http://www.cvshome.org/

to get the recent code. A detailed description of how to set this up forFlightGear
can be found at

http://www.flightgear.org/cvsResources/.

Unfortunately, the system implemented above does not really work as it should. As
a matter of fact, the stable version is usually so much outdated, that it does not at all
reflect thee stated of developmentFlightGear has reached. Given that the recent
developmental versions on the other hands may contain bugs (. . . undocumented
features), we recommend using the ”latest official (unstable) release” for the aver-
age user. This is the latest version named at

http://www.flightgear.org/News/;

usually this is also the version which the binary distributions available at

http://www.flightgear.org/Downloads/

are based on. If not otherwise stated, all procedures in this ”Installation and Getting
Started” will be based on these packages.

1.4 Flight models

Historically, FlightGear has been based on a flight model it inherited (together
with the Navion airplane) from LaRCsim. As this had several limitations (most
important, many characteristics were hard wired in contrast to using configuration
files), there were several attempts to develop or include alternative flight models.
As a result,FlightGear supports several different flight models, to be chosen from
at runtime.

The most important one is the JSB flight model developed by Jon Berndt. Ac-
tually, the JSB flight model is part of a stand-alone project calledJSBSim, having
its home at

http://jsbsim.sourceforge.net/.

Concerning airplanes, the JSB flight model at present provides support for a Cessna
172, a Cessna 182, a Cessna 310, and for an experimental plane called X15. Jon
and his group are gearing towards a very accurate flight model, and the JSB model
has becomeFlightGear’s default flight model.

As an interesting alternative, Christian Mayer developed a flight model of a hot
air balloon. Moreover, Curt Olson integrated a special slew mode called Magic
Carpet, which helps you to quickly fly from point A to point B.

http://www.cvshome.org/
http://www.flightgear.org/cvsResources/
http://www.flightgear.org/News/
http://www.flightgear.org/Downloads/
http://jsbsim.sourceforge.net/

Recently, Andrew Ross contributed another flight model calledYASim for Yet
another simulator. At present, it sports another Cessna 172, a Turbo 310, a fairly
ggod DC-3 model, along with a Boeing 747, Harrier, and A4.YASim takes a fun-
damentally different approach since it’s based on geometry information rather than
aerodynamic coefficients. Where JSBSim will be exact for every situation that is
known and flight tested, but may have odd and/or unrealistic behavior outside nor-
mal flight, YASim will be sensible and consistent in almost every flight situation,
but is likely to differ in performance numbers.

As a further alternative, there is the UIUC flight model, developed by a team
from the University of Illinois, independently fromFlightGear in the beginning
(while now using it for their simulations). This project aims at studying the simu-
lation of aircraft icing. Its home is at

http://amber.aae.uiuc.edu/ jscott/sis/.

The UIUC provides a host of different aircraft including several Cessna C172, a
Learjet 24, a Twin Otter and much more. To get an idea, you may check the folder
Aircraft-UIUC of theFlightGear path.

Please note, that the UIUC models donot have a working gear. So you might
experience some difficulties when starting from a runway. At least the nose gear
will be too weak and the airplane will fall on it’s nose. This can be circumvented
by pulling the stick more than usual for a while.

It is even possible to drive FlightGear’s scene display using an external FDM
running on a different computer – although this might not be a setup recommended
to people just getting in touch withFlightGear.

1.5 To whom this guide is addressed and how it is orga-
nized

There is little, if any, material in this Guide that is presented here exclusively. You
could even say with Montaigne that we ”merely gathered here a big bunch of other
men’s flowers, having furnished nothing of my own but the strip to hold them
together”. Most (but fortunately not all) of the information can as well be obtained
from theFlightGear web site located at:

http://www.flightgear.org/

Please, keep in mind that there are several mirrors to allFlightGear Web sites,
being listed on this page. Sometimes it is preferred to download from them than
from the original place.
However, a neatly printed manual is arguably preferable over loosely scattered
Readmefiles by some people, and those people may acknowledge the effort.

http://amber.aae.uiuc.edu/~jscott/sis/
http://www.flightgear.org/

This FlightGear Installation and Getting Startedmanual is intended to be a
first step towards a more completeFlightGear documentation (with the other parts,
hopefully, to be written by others). The target audience is the end-user who is not
interested in the internal workings of OpenGL or in building his or her own scenery,
for instance. It is our hope, that someday there will be an accompanyingFlight-
GearProgrammer’s Guide(which could be based on some of the documentation
found at

http://www.flightgear.org/Docs;

a FlightGear Scenery Design Guide, describing the Scenery tools now packaged
asTerraGear; and aFlightGear Flight School, at least.

As a supplement, we recommend reading theFlightGear FAQ to be found at
http://www.flightgear.org/Docs/FlightGear-FAQ.html
which has a lot of supplementary information to (and, at times, more recent

than) the present document.
We kindly ask you to help me refine this document by submitting correc-

tions, improvements, and more. Any user is invited to contribute descriptions
of alternative setups (graphics cards, operating systems etc.). We will be more
than happy to include those into future versions of thisInstallation and Getting
Started(of course not without giving credit to the authors).

While we intend to continuously update this document at least for the foresee-
able future, supposedly we will not be able to produce a new one for any single
release ofFlightGear. While we are watching the mailing lists, it would help if
developers adding new functionality would send us a short note.

http://www.flightgear.org/Docs
http://www.flightgear.org/Docs/FlightGear-FAQ.html

Chapter 2

Building the plane: Compiling
the program

This central chapter describes how to buildFlightGear on several systems. In case
you are on a Win32 (i. e. Windows95/98/ME/NT/2000/XP) platform or any of the
other platforms which binary executables are available for, you may not want to
go though that potentially troublesome process but skip that chapter instead and
straightly go to the next one. (Not everyone wants to build his or her plane himself
or herself, right?) However, there may be good reason for at least trying to build
the simulator:

• In case you are on a UNIX/Linux platform there may be no pre-compiled bi-
naries available for your system. In practice it is common to install programs
like this one on UNIX systems by recompiling them.

• There are several options you can set during compile time only.

• You may be proud you did.

On the other hand, compilingFlightGear is not a task for novice users. Thus, if
you’re a beginner (we all were once) on a platform which binaries are available for,
we recommend postponing this task and just starting with the binary distribution
to get you flying.

As you will notice, this Chapter is far from being complete. Basically, we de-
scribe compiling for two operating systems only, Windows and Linux, and for only
one compiler, the GNU C compiler.FlightGear has been shown to be built under
different compilers (including Microsoft Visual C) as well as different systems
(Macintosh) as well. The reason for these limitations are:

19

• Personally, we have access to a Windows machine running the Cygnus com-
piler only.

• According to the mailing lists, these seem to be the systems with the largest
user base.

• These are the simplest systems to compileFlightGear on. Other compilers
may need special add-ons (workplace etc.) or even modification of the code.

• The GNU compiler is free in the same sense of the GPL asFlightGear is.

You might want to check Section A,Missed approach, if anything fails during
compilation. In case this does not help we recommend sending a note to one of the
mailing lists (for hints on subscription see Chapter C).

There are several Linux distributions on the market, and most of them should
work. Some come even bundled with (often outdated) versions ofFlightGear.
However, if you are going to download or buy a distribution, Debian (Woody) is
suggested by most people. SuSE works well, too.

Contrary to Linux/Unix systems, Windows usually comes without any devel-
opment tools. This way, you first have to install a development environment. On
Windows, in a sense, before building the plane you will have to build the plant
for building planes. This will be the topic of the following section, which can be
omitted by Linux users.

2.1 Getting a development environment under Windows

There is a powerful development environment available for Windows and this even
for free: The Cygnus development tools, resp.Cygwin. Their home is at

http://sources.redhat.com/cygwin/,

and it is always a good idea to check back what is going on there now and then.
Nowadays, installingCygwin is nearly automatic. First, make sure the drive

you wantCygwin, PLIB , SimGearandFlightGear to live on, has nearly 1 GB of
free disk space. Create a temporary directory and download the installer from the
site named above to that directory. (While the installer does an automatic installa-
tion of the Cygnus environment, it is a good idea to download a new installer from
time to time.)

Invoke the installer now. It gives you three options. To avoid having to down-
load stuff twice in case of a re-installation or installation on a second machine,
we highly recommended to take a two-step procedure. First, select the option
Download from Internet . Insert the path of your temporary directory, your

http://sources.redhat.com/cygwin/

Internet connection settings and then choose a mirror form the list. Near servers
might be preferred, but may be sometimes a bit behind with mirroring. We found

ftp://mirrors.rcn.net

a very recent and fast choice. In the next windows the default settings are usually
a good start. Now chooseNext , sit back and wait.

If you are done, invoke the installer another time, now with the optionInstall
from local directory . After confirming the temporary directory you can
select a root directory (acting as the root directory of your pseudo UNIX file sys-
tem). Cygnus does not recommend taking the actual root directory of a drive, thus
choosec:/Cygwin (while other drives thanc: work as well). Now, allCygwin
stuff and allFlightGear stuff lives under this directory. In addition, select

Default text file type: Unix
You are free to install the compiler for all users or just for you.
As a final step you should include the binary directory (for instance:c:/Cygwin/bin)

into your path by addingpath=c:\Cygwin\bin in yourautoexec.bat un-
der Windows 95/98/ME. Under WindowsNT/2000/XP, use theExtended tab
under theSystem properties page in Windowscontrol panel . There
you’ll find a buttonEnvironment variables , where you can add the named
directory.

Now you are done. Fortunately, all this is required only once. At this point you
have a nearly UNIX-like (command line) development environment. Because of
this, the following steps are nearly identical under Windows and Linux/Unix.

2.2 Compiling FlightGear under Linux/Windows

A preliminary remark: For UNIX, make sure you have all necessary OpenGL li-
braries first. Fortunately on all recent Linux distributions (i.e. SuSE-7.1) these
are already put on the right place. Be sure to install the proper package. Besides
the basic X11 stuff you want to have - SuSE as an example - the following pack-
ages: mesa, mesa-devel, mesasoft, xf86glx, xf86glu, xf86glu-devel, mesaglut,
mesaglut-devel and plib.

Also you are expected to have a bunch of tools installed that are usually re-
quired to compile the Linux kernel. So you may use the Linux kernel source
package top determine the required dependencies. The following packages might
prove to be useful when fiddling with the FlightGear sources: automake, autoconf,
libtool, bison, flex and some more, that are not required to build a Linux kernel.

Please compare the release of the Plib library with the one that ships with your
Linux distribution. It might be the case that FlightGear requires a newer one that
is not yet provided by your vendor.

ftp://mirrors.rcn.net

Under Windows, the required libraries should have been installed with theCyg-
win installation above.

The following steps are identical under Linux/Unix and under Windows with
minor modifications. Under Windows, just open theCygwin icon from the Start
menu or from the desktop to get a command line.

To begin with, theFlightGear build process is based on four packages which
you need to built and installed in this order:

• PLIB

• SimGear

• FlightGear Program

• FlightGear base (data - no compilation required)

1. First, choose an install directory for FlightGear. This will not be the one
your binaries will live in but the one for your source code and compilation
files. We suggest

cd:/usr/local/

mkdir source

2. Now, you have to install a support libraryPLIB which is absolutely essential
for the building process.PLIB contains most of the basic graphics rendering,
audio, and joystick routines. Download the latest stable version ofPLIB
from

http://plib.sourceforge.net/

to /usr/local/source . Change to that directory and unpackPLIB us-
ing

tar xvfz plib-X.X.X.tar.gz .

cd into plib-X.X.X and run

./configure
make
make install .

Under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

Confirm you now havePLIB ’s header files (asssg.h etc.) under/usr/include/plib
(and nowhere else).

http://plib.sourceforge.net/

3. Next, you have to install another librarySimGearcontaining the basic simu-
lation routines. Get the most recent fileSimGear-X.X.X.tar.gz from

ftp://ftp.simgear.org/pub/simgear/Source/

Download it to/usr/local/source . Change to that directory and un-
packSimGearusing

tar xvfz SimGear-X.X.X.tar.gz .

cd into SimGear-X.X.X and run

./configure
make
make install

Again, under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

4. Now, you’re prepared to buildFlightGear itself, finally. GetFlightGear-X.X.X.tar.gz
from

ftp://www.flightgear.org/pub/flightgear/Source/

and download it to/usr/local/source . UnpackFlightGear using

tar xvfz FlightGear-X.X.X.tar.gz .

cd into FlightGear-X.X.X and run

./configure

configure knows about numerous options, with the more relevant ones to be
specified via switches as

• --with-network-olk : Include Oliver Delise’s multi-pilot network-
ing support,

• --disable-network-olk : Disable Oliver Delise’s multi-pilot net-
working support,

• --with-old-weather : Include original/simple weather subsys-
tem,

• --with-x : Use the X Window system (Linux only)

ftp://ftp.simgear.org/pub/simgear/Source/
ftp://www.flightgear.org/pub/flightgear/Source/

• --prefix=/XXX : InstallFlightGear in the directoryXXX.

A good choice would be--prefix=/usr/local/FlightGear . In
this caseFlightGear’s binaries will live under/usr/local/FlightGear/bin .
(If you don’t specify a--prefix the binaries will go into/usr/local/bin
while the base package files are expected under/usr/local/lib/FlightGear .)

Assumingconfigure finished successfully, run

make
make install .

Again, under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

Note: You can save a significant amount of space by stripping all the debug-
ging symbols off the executable. To do this, make a

cd /usr/local/FlightGear/bin

to the directory in theinstall tree where your binaries live and run

strip * .

This completes building the executable and should result in a filefgfs (Unix)
or fgfs.exe (Windows) under/usr/local/FlightGear/bin

Note: If for whatever reason you want to re-build the simulator, use the com-
mandmake distclean either in theSimGear-X.X.X or in theFlightGear-X.X.X
directory to remove all the build. If you want to re-runconfigure (for in-
stance because of having installed another version ofPLIB etc.), remove the files
config.cache from these same directories before.

2.3 Compiling FlightGear under Mac OS 10.1

For compiling under Mac OS 10.1 you will need

• Mac OS 10.1 with 10.1 developer tools installed.

• 500MB disk (conservative estimate, might be a little less).

• Fearlessness of command line compiling.

This will need a bit more bravery than building under Windows or Linux. First,
there are less people who tested it under sometimes strange configurations. Second,
the process as described here itself nees a touch more experience by using CVS
repositories.

First, download the development files. They are intended to simplify the build
process as much as possible:

http://expert.cc.purdue.edu/ walisser/fg/fgdev.tar.gz

Once you have this extracted, make sure you are using tcsh, since the setup
script requires it.

1. Setup the build environment:
cd fgdev
source bin/prepare.csh

2. Install automake/aclocal build tools
cd $BUILDDIR/src/automake-1.4-p4
./configure --prefix=$BUILDDIR
make install rehash

3. Build PLIB
cd $BUILDDIR/src/plib-1.4.2
aclocal
automake
./configure --prefix=$BUILDDIR --with-GL=$BUILDDIR
make install

4. Get the SimGear sources
cd $BUILDDIR/src
setenv CVSROOT :pserver:cvs@cvs.simgear.org:
/var/cvs/SimGear-0.0 (one line)
cvs login
Enter ”guest” for password
cvs -z3 checkout SimGear

5. Build Metakit
cd $BUILDDIR/src/SimGear
tar -zxvf metakit-X.X.X.tar.gz
cd metakit-X.X.X/builds
../unix/configure --prefix=&BUILDDIR

http://expert.cc.purdue.edu/~walisser/fg/fgdev.tar.gz

make
make install

6. Build SimGear
cd $BUILDDIR/src/SimGear
./autogen.sh
./configure --prefix=$BUILDDIR --host=powerpc
make install

7. Get the FlightGear sourcescd $BUILDDIR/src
setenv CVSROOT :pserver:cvs@cvs.flightgear.org:
/var/cvs/FlightGear-0.7 (one line!)
cvs login
#enter ”guest” for password
cvs -z3 checkout FlightGear

8. Build FlightGear
cd $BUILDDIR/src/FlightGear
patch -p0 < ../jsb.diff
./autogen.sh
./configure --prefix=$BUILDDIR --includedir=
$BUILDDIR --with-threads --without-x (one line)

9. Get the base data files (if you don’t have them already)
cd $BUILDDIR
setenv CVSROOT :pserver:cvsguest@rockfish.net:
/home/cvsroot (one line)
cvs login
#password is ”cvsguest”
cvs -z3 checkout fgfsbase

10. Move data files (if you have them already)
just make a symlink or copy data files to ”fgfsbase” in $BUILDDIR

11. Run FlightGear
cd $BUILDDIR
src/FlightGear/src/Main/fgfs

2.4 Compiling on other systems

Compiling on other Unix systems - at least on IRIX and on Solaris, is pretty similar
to the procedure on Linux - given the presence of a working GNU C compiler.
Especially IRIX and also recent releases of Solaris come with the basic OpenGL
libraries. Unfortunately the ”glut” libraries are mostly missing and have to be
installed separately (see the introductory remark to this chapter). As compilation
of the ”glut” sources is not a trivial task to everyone, you might want to use a pre-
built binary. Everything you need is a static library ”libglut.a” and an include file
”glut.h”. An easy way to make them usable is to place them into/usr/lib/ and
/usr/include/GL/ . In case you insist on building the library yourself, you
might want to have a look at FreeGLUT

http://freeglut.sourceforge.net/

which should compile with minor tweaks. Necessary patches might be found in

ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglutportable.patch

Please note that you donot want to create 64 bit binaries in IRIX with GCC (even if
your CPU is a R10/12/14k) because GCC produces a broken ”fgfs” binary (in case
the compiler does’nt stop with ”internal compiler error”). Things might look better
if Eric Hofman manages to tweak the FlightGear sources for proper compiling with
MIPSPro compiler (it’s already mostly done).

There should be a workplace for Microsoft Visual C++ (MSVC6) included in
the officialFlightGeardistribution. Macintosh users find the required CodeWarrior
files as a.bin archive at

http://icdweb.cc.purdue.edu/˜walisser/fg/.
Numerous (although outdated, at times) hints on compiling on different sys-

tems are included in the source code underdocs-mini .

2.5 Installing the base package

If you succeeded in performing the steps named above, you will have a directory
holding the executables forFlightGear. This is not yet sufficient for performing
FlightGear, though. Besides those, you will need a collection of support data files
(scenery, aircraft, sound) collected in the so-called base package. In case you com-
piled the latest official release, the accompanying base package is available from

ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz.

http://freeglut.sourceforge.net/
ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglut_portable.patch
http://icdweb.cc.purdue.edu/~walisser/fg/
ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz

This package is usually quite large (around 25 MB), but must be installed for
FlightGear to run. There is no compilation required for it. Just download it to
/usr/local and install it with

tar xvfz fgfs-base-X.X.X.tar.gz .
Now you should find all theFlightGear files under/usr/local/Flightgear
in the following directory structure::

/usr/local/Flightgear
/usr/local/Flightgear/Aircraft
/usr/local/Flightgear/Aircraft-uiuc
. . .
/usr/local/Flightgear/bin
. . .
/usr/local/Flightgear/Weather .

2.6 For test pilots only: Building the CVS snapshots

It you are into adventures or feel you’re an advanced user, you can try one of the
recent bleeding edge snapshots at

http://www.flightgear.org/Downloads/.

In this case you have to get the most recent Snapshot fromSimGearat

http://www.simgear.org/downloads.html

as well. But be prepared: These are for development and may (and often do)
contain bugs.

If you are using these CVS snapshots, the base package named above will
usually not be in sync with the recent code and you have to download the most
recent developer’s version from

http://rockfish.net/fg/.

We suggest downloading this packagefgfs base-snap.X.X.X.tar.gz to
a temporary directory. Now, decompress it using

tar xvfz fgfs base-snap.X.X.X.tar.gz .

Finally, double-check you got the directory structure named above.

http://www.flightgear.org/Downloads/
http://www.simgear.org/downloads.html
http://rockfish.net/fg/

Chapter 3

Preflight: Installing FlightGear

You can skip this Section if you builtFlightGear along the lines described in the
previous Chapter. If you did not and you’re jumping in here, your first step will
consist in installing the binaries. At present, there are pre-compiled binaries avail-
able for

• Windows (any flavor),

• Macintosh OSX,

• Linux,

• SGI Irix.

3.1 Installing the binary distribution on a Windows sys-
tem

The following supposes you are on a Windows (95/98/Me/NT/2000/XP) system.
Installing the binaries is quite simple. Go to

ftp://www.flightgear.org/pub/flightgear/Win32/

and download the three filesfgfs-base-X.X.X.zip , fgfs-manual-X.X.X.zip ,
andfgfs-win32-bin-X.X.X.zip from

ftp://www.flightgear.org/pub/flightgear/Win32/

to a drive of your choice. Windows XP includes a program for unpacking *.zip
files. If you are working under an older version of Windows, we suggest getting
Winzip from

29

ftp://www.flightgear.org/pub/flightgear/Win32/
ftp://www.flightgear.org/pub/flightgear/Win32/

http://www.winzip.com/.

For a free alternative, you may considerunzip from Info-ZIP,

http://www.info-zip.org/pub/infozip/

Extract the files named above. If you choose drivec: you should find a file
runfgfs.bat underc:/Flightgear now. Double-clicking it should invoke
the simulator.

In case of doubt about the correct directory structure, see the summary at the
end of chapter 2.

3.2 Installing the binary distribution on a Macintosh sys-
tem

If your Macintosh is running the conventional Mac OS 9 or earlier, there are ver-
sions up toFlightGear 0.7.6 available being provided courtesy Darrell Walisser).
Download the fileFlightGear_Installer_0.X.X.sit from the correspond-
ing subdirectory under

http://icdweb.cc.purdue.edu/ walisser/fg/.

This file contains the program as well as the required base package files (scenery
etc.). For unpacking, useStuffit Expander 5.0 or later.

The latest build available for Mac OS 9.x is 0.7.6, located in the same place.
The base package is part of the download for Mac OS 9.x, but not for Mac OSX.

Alternatively, if you are running Mac OS X, downloadfgfs-0.X.X.gz
from the same site named above. The Mac OS X builds are in a gzip file in the
same directory. There is a readme file in the directory to help people identify what
to download.

Mac OS X requires that you first download the base package. Then extract it
with
tar -zxvf fgfs-base-X.X.X.tar.gz
gunzip fgfs-X.X.X.-date.gz
Note that there is norunfgfs script for Mac OS X yet.

3.3 Installing the binary distribution on a Debian Linux
system

Download the fileflightgear_0.7.6-6_i386.deb (being provided cour-
tesy Ove Kaaven) from any of the Debian mirror sites listed at

http://www.winzip.com/
http://icdweb.cc.purdue.edu/~walisser/fg/

http://packages.debian.org/unstable/games/flightgear.html.

Like any Debian package, this can be installed via

dpkg --install flightgear_0.7.6-6_i386.deb .

After installation, you will find the directory/usr/local/Flightgear con-
taining the scriptrunfgfs to start the program.

3.4 Installing the binary distribution on a SGI IRIX sys-
tem

If there are binaries available for SGI IRIX systems, download all the required files
(being provided courtesy Erik Hofman) from

http://www.a1.nl/ ehofman/fgfs/

and install them. Now you can startFlightGear via running the script
/opt/bin/fgfs .

3.5 Installing add-on scenery

There is a complete set of scenery files worldwide available created by Curt Olson
which can be downloaded via a clickable map at

http://www.flightgear.org/Downloads/world-scenery.html

Moreover, Curt provides the complete set of US Scenery on CD-ROM for those
who really would like to fly over all of the USA. For more detail, check the remarks
on the downloads page above.

For installing these files, you have to unpack them under/Flightgear/Scenery .
Do not de-compress the numbered scenery files like 958402.gz! This will be done
by FlightGear on the fly.

As an example, consider installation of the scenery package w120n30 contain-
ing the Grand Canyon Scenery.

After having installed the base package, you should have ended up with the
following directory structure:
/usr/local/FlightGear/Scenery
/usr/local/FlightGear/w130n30
/usr/local/FlightGear/w130n30/w122n37
/usr/local/FlightGear/Scenery/w130n30/w123n37
with the directories w122n37 and w123n37m, resp. containing numerous *.gz files.
Installation of the Grand Canyon scenery adds to this the directories

http://packages.debian.org/unstable/games/flightgear.html
http://www.a1.nl/~ehofman/fgfs/
http://www.flightgear.org/Downloads/world-scenery.html

/usr/local/FlightGear/w120n30/w112n30
/usr/local/FlightGear/w120n30/w112n31
...
/usr/local/FlightGear/w120n30/w120n39 .

3.6 Installing documentation

Most of the packages named above include the completeFlightGear documenta-
tion including a .pdf version of thisInstallation and Getting StartedGuide intended
for pretty printing using Adobe’s Acrobat Reader being available from

http://www.adobe.com/acrobat

Moreover, if properly installed, the .html version can be accessed viaFlightGear’s
help menu entry.

Besides, the source code contains a directorydocs-mini containing numer-
ous ideas on and solutions to special problems. This is also a good place for further
reading.

http://www.adobe.com/acrobat

Part II

Flying with FlightGear

33

Chapter 4

Takeoff: How to start the
program

4.1 Launching the simulator under Unix/Linux

Under Linux (or any other flavor of Unix),FlightGear will be invoked by

runfgfs --option1 --option2... ,

where the options will be described in Section 4.4 below.
If something strange happens while using this shell script, if you want to do

some debugging (i.e. using ”strace”) or if you just feel nice to be ”keen”, then
you can startFlightGear directly by executing the ”fgfs” binary. In this case you
should at least add one variable to your environment, which is needed to locate
the (mostly) shared library built from the sources of theSimGearpackage. Please
add the respective directory to yourLD_LIBRARY_PATH. You can do so with the
following on Bourne shell (compatibles):

LD_LIBRARY_PATH=/usr/local/FlightGear/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH/

or on C shell (compatibles):

setenv LD_LIBRARY_PATH
/usr/local/FlightGear/lib:$LD_LIBRARY_PATH

Besides this (used by the dynamic linker) ”fgfs” knows about the following envi-
ronment variable

FG_ROOT: root directory for the FlightGear base package; this corresponds to
the--fg-root= pathoption as described in Sec. 4.4.1

34

4.2 Launching the simulator under Windows

Before starting the simulator, you may want to adapt the filewebrun.bat situ-
ated in the mainFlightGear directory. Open the file with an editor

In Windows explorer, change to the directory/FlightGear and double-
click runfgfs.bat .

Fig. 3: Ready for takeoff. Waiting at the default startup position at San Francisco
Itl., KSFO.

Alternatively, if for one or the other reason the batch file does not work or
is missing, you can open an MS-DOS shell, change to the directory where your
binary resides (typically something likec:/FlightGear/bin where you might
have to substitutec: in favor of yourFlightGear directory), set the environment
variable via (note the backslashes!)

SET FGROOT=c:\FlightGear \bin

and invokeFlightGear (within the same MS-DOS shell, as environment settings
are only valid locally within the same shell) via

fgfs --option1 --option2... .

Of course, you can create your ownrunfgfs.bat with WindowsEditor
using the two lines above.

For getting maximum performance it is recommended to minimize (iconize)
the text output window while runningFlightGear.

4.3 Launching the simulator under Mac OS X

Say you downloaded the base package and binary to yout home directory. Then
you can openTerminal.app and execute the following sequence:

setenv FG ROOT /fgfs-base-X.X.X ./fgfs-X.X.X.-date
--option1 -- option 2 (one line)

or

./fgfs-X.X.X-version-date --fg-root= /̃fgfs-base-X.X.X
--option1 --option2 . (one line)

4.4 Command line parameters

Following is a list and short description of the numerous command line options
available forFlightGear. If you are runningFlightGear under Windows you can
include these intorunfgfs.bat .

However, in case of options you want to re-use continually (like joystick set-
tings) it is recommended to include them into a file called.fgfsrc under Unix
systems andsystem.fgfsrc , resp. under Windows. This file has to be in the
top FlightGear directory (for instance /usr/local/Flightgear). As it depends on your
preferences, it is not delivered withFlightGear, but can be created with any text ed-
itor (notepad, emacs, vi, if you like). Examples for such a file (including a detailed
description on the configuration of joysticks) can be found at

http://rockfish.net/shell/aboutjoy.txt.

4.4.1 General Options

• --help , -h : Gives a small help text, kind of a short version of this Section.

• --fg-root= path: Tells FlightGear where to look for its data files if you
didn’t compile it with the default settings.

• --fg-scenery= path: Allows specification of a path to the scenery direc-
torypath , in case scenery is not at the default position under

http://rockfish.net/shell/aboutjoy.txt

/Flightgear/Scenery ; this might be especially useful in case you
have scenery on a CD-ROM.

• --disable-game-mode : Disables full screen display.

• --enable-game-mode : Enables full screen display.

• --disable-splash-screen : Turns off the rotating 3DFX logo when
the accelerator board gets initialized (3DFX only).

• --enable-splash-screen : If you like advertising, set this!

• --disable-intro-music : No audio sample is being played whenFlight-
Gearstarts up. Suggested in case of trouble with playing the intro.

• --enable-intro-music : If your machine is powerful enough, enjoy
this setting.

• --disable-mouse-pointer : Disables mouse interface.

• --enable-mouse-pointer : Enables mouse interface. Useful in full
screen mode for old Voodoo/VoodooII based cards.

• --disable-freeze : This will put you intoFlightGear with the engine
running, ready for Take-Off.

• --enable-freeze : StartsFlightGear in frozen state.

• --disable-fuel-freeze : Fuel is consumed normally.

• --enable-fuel-freeze : Fuel tank quantity is forced to remain con-
stant.

• --disable-tod-freeze : Time of day advances normally.

• --enable-tod-freeze : Do not advance time of day.

• --control-mode : Specify your control device (joystick, keyboard, mouse)
Defaults to joystick (yoke).

• --disable-auto-coordination : Switches auto coordination between
aileron/rudder off (default).

• --enable-auto-coordination : Switches auto coordination between
aileron/rudder on (recommended without pedals).

• --browser-app=/path/to/app : specify location of your web browser.
Example:--browser-app=
’’C: \Programme \Internet Explorer \iexplore.exe’’ (Note
the ” ” because of the broken word Internet Explorer!).

• --prop:name=value: set propertyname to value
Example:--prop:/engines/engine0/running=true for starting
with running engines. Another example:
--aircraft=c172
--prop:/consumables/fuels/tank[0]/level-gal=10
--prop:/consumables/fuels/tank[1]/level-gal=10
filles the Cessna for a short flight.

• --config=path: Load additional properties from the given path. Exam-
ple: runfgfs --config=./Aircraft/X15-set.xml

• --units-feed : Use feet for distances.

• --units-meters : Use meters for distances.

4.4.2 Features

• --disable-hud : Switches off the HUD (HeadUp Display).

• --enable-hud : Turns the HUD on.

• --enable-anti-aliased-hud : Turns on anti-aliaseded HUD lines
for better quality, if hardware supports this.

• --disable-anti-aliased-hud : Turns off anti-aliaseded HUD lines.

• --enable-panel : Turns the instrument panel on (default).

• --disable-panel : Turns the instrument panel off.

• --disable-sound : Self explaining.

• --enable-sound : See above.

4.4.3 Flight model

• --aircraft= name of aircraft definition fileExample:--aircraft=c310 .
For possible choices check the directory/FlightGear/Aircraft . Do
not include the extension’’-set.xml’’ into the aircraft name but use

the remaining beginning of the respective file names for choosing an aircraft.
This way flight model, panel etc. are all loaded in a consistent way.

• --fdm= abcdSelect the core flight model. Options arejsb, larcsim,
yasim, magic, balloon, external, ada, null . Default value
is jsb (JSBSim). larcsim is the flight model whichFlightGear inherited
from the LaRCSim simulator. yasim is Any Ross’ Yet Another Flight Dy-
namics Simulator. Magic is a slew mode. Balloon is a hot air balloon. Exter-
nal refers to remote control of the simulator. Null selects no flight dynamics
model at all. The UIUC flight model is not chosen this way but via the next
option! For further information on flight models cf. Section 1.4 and below.

• --aero= abcd Specifies the aircraft model to load. Default is a Cessna
c172. Alternatives available depend on the flight model chosen.

• --model-hz= n Run the Flight Dynamics Model with this rate (iterations
per second).

• --speed= n Run the Flight Dynamics Model this much faster than real
time.

• --notrim Do NOT attempt to trim the model when initializing JSBSim.

• --on-ground : Start up at ground level (default).

• --in-air : Start up in the air. Naturally, you have to specify an initial
altitude as below for this to make sense. This is a must for the X15.

• --wind= DIR@SPEED: Specify wind coming from the direction DIR (in
degrees) at speed SPEED (knots).

4.4.4 Aircraft model directory (Only for the UIUC Flight Dynamics
Model)

• --aircraft-dir= path: Aircraft directory relative to the root-path, de-
fined via$FG ROOTor --fg-root .

Remark: The difference in the handling of UIUC models has historic reasons.
These models use the LaRCsim FDM. As this FDM isn’t the default FDM any
more you have to specify it manually. Also the airplane description needs manual
interaction as you have to specify the directory by hand where the specific aircraft
data resides. So you have to use the following for flying the ’TwinOtter’:

fgfs --fdm=larcsim --aero=uiuc

--aircraft-dir=Aircraft-uiuc/TwinOtter

Fortunately work has been done to simplificate this. At least those airplanes can be
flown easily by using an appropriate ’--aircraft’-string. These are the following:

--aircraft=747-uiuc, --aircraft=beech99-uiuc,
--aircraft=c172-uiuc, --aircraft=c310-uiuc

If time permits the remaining aircrafts will be adjusted soon. Please have a
look at$FG ROOT/Aircraft-uiuc for the avaliable aircrafts provided by the
UIUC model collection. Also please read the notes in Section 1.4 on UIUC.

4.4.5 Initial Position and Orientation

• --airport-id= ABCD: If you want to start directly at an airport, enter its
international code, i.e. KJFK for JFK airport in New York etc. A long/short
list of the IDs of the airports being implemented can be found in/Flight
Gear/Airports . You only have to unpack one of the files withgunzip .
Keep in mind, you need the terrain data for the relevant region, though!

• --offset-distance= nm: Here you can specify the distance to thresh-
old in nm.

• --offset-azimuth= deg: Here you can specify the heading to threshold
in degrees.

• --lon= degrees: This is the startup longitude in degrees (west = -).

• --lat= degrees: This is the startup latitude in degrees (south = -).

• --altitude= feet: This is useful if you want to start in free flight in
connection with--in-air . Altitude specified in feet unless you choose
--units-meters .

• --heading= degrees: Sets the initial heading (yaw angle) in degrees.

• --roll= degrees: Sets the startup roll angle (roll angle) in degrees.

• --pitch= degrees: Sets the startup pitch angle (pitch angle) in degrees.

• --uBody= feet per second: Speed along the body X axis in feet per second,
unless you choose--units-meters .

• --vBody= feet per second: Speed along the body Y axis in feet per second,
unless you choose--units-meters .

• --wBody= feet per second: Speed along the body Z axis in feet per second,
unless you choose--units-meters .

• --vc= knots: Allows specifying the initial airspeed in knots (only in con-
nection with--fdm=jsb).

• --mach= num: Allows specifying the initial airspeed as Mach number (only
in connection with--fdm=jsb).

4.4.6 Rendering Options

• --bpp= depth: Specify the bits per pixel.

• --fog-disable : To cut down the rendering efforts, distant regions are
vanishing in fog by default. If you disable fogging, you’ll see farther but
your frame rates will drop.

• --fog-fastest : The scenery will not look very nice but frame rate will
increase.

• --fog-nicest : This option will give you a fairly realistic view of flying
on a hazy day.

• --enable-clouds : Enable cloud layer (default).

• --disable-clouds : Disable cloud layer.

• --clouds-asl= xxx: Specify altitude of cloud layer above sea level.

• --fov= xx.x: Sets the field of view in degrees. Default is 55.0.

• --disable-fullscreen : Disable full screen mode (default).

• --enable-fullscreen : Enable full screen mode.

• --shading-flat : This is the fastest mode but the terrain will look ugly!
This option might help if your video processor is really slow.

• --shading-smooth : This is the recommended (and default) setting -
things will look really nice.

• --disable-skyblend : No fogging or haze, sky will be displayed using
just one color. Fast but ugly!

• --enable-skyblend : Fogging/haze is enabled, sky and terrain look re-
alistic. This is the default and recommended setting.

• --disable-textures : Terrain details will be disabled. Looks ugly, but
might help if your video board is slow.

• --enable-textures : Default and recommended.

• --enable-wireframe : If you want to know how the world ofFlight-
Gear looks like internally, try this!

• --disable-wireframe : No wireframe. Default.

• --geometry= WWWxHHH: Defines the size of the window used, i.e.WWWxHHH
can be640x480 , 800x600 , or 1024x768 .

• --view-offset= xxx: Allows setting the default forward view direction
as an offset from straight ahead. Possible values areLEFT, RIGHT, CENTER,
or a specific number of degrees. Useful for multi-window display.

• --visibility= meters: You can specify the initial visibility in meters
here.

• --visibility-miles= miles: You can specify the initial visibility in
miles here.

4.4.7 HUD Options

• --hud-tris : HUD displays the number of triangles rendered.

• --hud-culled : HUD displays percentage of triangles culled.

4.4.8 Time Options

• --time-offset= [+-]hh:mm:ss: Offset local time by this amount.

• --time-match-real : Synchronize real-world andFlightGear time.

• --time-match-local : Synchronize local real-world andFlightGear
time.

• --start-date-gmt= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses your system time.

• --start-date-gmt= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Time is Greenwich Mean Time.

• --start-date-lat= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses local aircraft time.

4.4.9 Network Options

• --httpd=port Enable http server on the specified port.

• --enable-network-olk : Enables Oliver Delises’s Multipilot mode.

• --enable-network-olk : Disables Oliver Delises’s Multipilot mode
(default).

• --net-hud : HUD displays network info.

• --net-id= name: Specify your own callsign

4.4.10 Route/Waypoint Options

• --wp= ID[@alt] : Allows specifying a waypoint for the GC autopilot; it is
possible to specify multiple waypoints (i.e. a route) via multiple instances of
this command.

• --flight-plan= [file] : This is more comfortable if you have several
waypoints. You can specify a file to read them from.

These options are rather geared to the advanced user who knows what he is
doing.

4.4.11 IO Options

• --gamin= params: Open connection using the Garmin GPS protocol.

• --joyclient= params: Open connection to an Agwagon joystick.

• --native-ctrls= params: Open connection using the FG native Con-
trols protocol.

• --native-fdm= params: Open connection using the FG Native FDM pro-
tocol.

• --native= params: Open connection using the FG Native protocol.

• --nmea= params: Open connection using the NMEA protocol.

• --opengc= params: Open connection using the OpenGC protocol.

• --props= params: Open connection using the interactive property man-
ager.

• --pve= params: Open connection using the PVE protocol.

• --ray= params: Open connection using the RayWoodworth motion chair
protocol.

• --rul= params: Open connection using the RUL protocol.

• --atc610x : Enable atc610x interface.

4.4.12 Debugging options

• --trace-read= params: Trace the reads for a property; multiple instances
are allowed.

• --trace-write= params: Trace the writes for a property; multiple in-
stances are allowed.

4.4.13 Joystick properties

Could you imagine a pilot in his or her Cessna controlling the machine with a key-
board alone? For getting the proper feeling of flight you will need a joystick/yoke
plus rudder pedals, right? However, the combination of numerous types of joy-
sticks, flightsticks, yokes, pedals etc. on the market with the several target operat-
ing systems, makes joystick support a nontrivial task inFlightGear.

All of FlightGear’s joystick (as well as keyboard) properties are written in
plain ASCII files, thus anyone can adapt them, if necessary. Fortunately, there is
a tool available now, which takes most of the burden form the average user who,
maybe, is not that experienced with XML, the language which these files arwe
written in.

For configuring your joystick, open a command shell (command prompt(DOS
shell under windows, to be found unter Start—All programs—Accessories). Change
to the directory/FlightGear/bin via e.g. (modify to your path)
cd c: \FlightGear \bin

and invoke the tool fgjs via
fgjs

on a UNIX/Linux machine, or via
fgjs.exe

on a Windows machine. The program will tell you which joysticks, if any,
where detected. Now follow the commands given on screen, i.e. move the axis
and press the buttons as required. Be careful, a minor touch already ”counts” as a
movement. Check the reports on screen. If you feel something went wrong, just
re-start the program

After you are done with all the axis/switches, the directory above will hold
a file calledfgfsrc.js . If the FlightGear base directoryFlighGear does
not already contain an options file.fgfsrc (under UNIX)/system.fgfsrc
(under Windows) mentioned above, just copy

fgfsrc.js into .fgfsrc (UNIX)/system.fgfsrc (Windows)

and place it into the directoryFlightGear base directoryFlighGear . In case you
already wrote an options file, just open it as well asfgfsrc.js with an editor
and copy the entries fromfgfsrc.js into .fgfsrc /system.fgfsrc . One
hint: The output offgjs is UNIX formatted. As a result, Windows Editor may
not display it the proper way. I suggest getting an editor being able to handle UNIX
files as well. My favorite freeware file editor for that purpose, although somewhat
dated, is PFE still, to be obtained from

http://www.lancs.ac.uk/people/cpaap/pfe/.

The the axis/button assignment offgjs should, at least, get the axis assign-
ments right, its output may need some tweaking. There may be axis moving the
opposite way the should, the dead zones may be too small etc. For instance, I had
to change

--prop:/input/joysticks/js[1]/axis[1]/binding/factor=-1.0

into

--prop:/input/joysticks/js[1]/axis[1]/binding/factor=1.0

(USB CH Flightsim Yoke under Windows XP). Thus, here is a short introduc-
tion into the assignments of joystick properties.

Basically, all axes settings are specified via lines having the following structure:

--prop:/input/joysticks/js[n]/axis[m]
/binding/command=property-scale
--prop:/input/joysticks/js[n]/axis[m]
/binding/property=/controls/ steering option
--prop:/input/joysticks/js[n]/axis[m]
/binding/dead-band= db--prop:/input/joysticks/js[n]/axis[m]
/binding/offset= os--prop:/input/joysticks/js[n]/axis[m]
/binding/factor= fa

where

http://www.lancs.ac.uk/people/cpaap/pfe/

n = number of device (usually starting with 0)
m = number of axis (usually starting with 0)

steering option = elevator, aileron, rudder, throttle, mixture, pitch
dead-band = range, within which signals are discarded;

useful to avoid jittering for minor yoke movements
offset = specifies, if device not centered in its neutral position
factor = controls sensitivity of that axis; defaults to +1,

with a value of -1 reversing the behavior

You should be able to at least get your joystick working along these lines.
Concerning all the finer points, for instance, getting the joystick buttons working,
John Check has written a very useful README being included in the base package
to be found underFlightGear/Docs/Readme/Joystick.html . In case
of any trouble with your input device, it is highly recommended to have a look into
this document.

Chapter 5

In-flight: All about instruments,
keystrokes and menus

The following is a description of the main systems for controlling the program
and piloting the plane: Historically, keyboard controls were developed first, and
you can still control most of the simulator via the keyboard alone. Later on, they
were supplemented by several menu entries, making the interface more accessible,
particularly for beginners, and providing additional functionality.

For getting a real feeling of flight, you should definitely consider getting a
joystick or – preferred – a yoke plus rudder pedals. In any case, you can specify
your device of choice for control via the--control-mode option, i.e. select
joystick, keyboard, mouse. The default setting is joystick. Concerning instruments,
there are again two alternatives: You can use the panel or the HUD.

A short leaflet based on this chapter can be found at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html.

A version of this leaflet can also be opened viaFlightGear’s help menu.

5.1 Starting the engine

Depending on your situation, when you start the simulator the engines may be on
or off. When they are on you just can go on with the start. When they are off, you
have to start them first. The ignition switch for starting the engine is situated in the
lower left corner of the panel. It is shown in Fig. 4.

47

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

Fig. 4: The ignition switch.

It has five positions: ”OFF”, ”L”, ”R”, ”BOTH”, and ”START”. The extreme
right position is for starting the engine. For starting the engine, put it onto the
position ”BOTH” using the mouse first.

Keep in mind that the mixture lever has to be at 100 % (all the way in) for
starting the engine – otherwise you will fail. In addition, advance the throttle to
about 25 %.

Operate the starter using the SPACE key now. When pressing the SPACE key
you will observe the ignition switch to change to the position ”START” and the
engine to start after a few seconds. Afterwards you can bring the throttle back to
idle (all the way out).

In addition, have a look if the parking brakes are on (red field lit). If so, press
the ”B” button to release them.

5.2 Keyboard controls

While joysticks or yokes are supported as are rudder pedals, you can flyFlightGear
using the keyboard alone. For proper control of the plane during flight via the
keyboard (i) theNumLock key must be switched on (ii) theFlightGear window
must have focus (if not, click with the mouse onto the graphics window). Several
of the keyboard controls might be helpful even in case you use a joystick or yoke.

After activatingNumLock the following main keyboard controls for driving
the plane should work:

Tab. 1: Main keyboard controls forFlightGear on the numeric keypad with acti-
vatedNumLock key:.

Key Action
Pg Up/Pg Dn Throttle
Left Arrow/Right Arrow Aileron
Up Arrow/Down Arrow Elevator
Ins/Enter Rudder
5 Center aileron/elevator/rudder
Home/End Elevator trim

For changing views you have to de-activateNumLock. NowShift + <Numeric
Keypad Key > changes the view as follows:

Tab. 2: View directions accessible after de-activatingNumLock on the numeric
keypad.

Numeric Key View direction
Shift-8 Forward
Shift-7 Left/forward
Shift-4 Left
Shift-1 Left/back
Shift-2 Back
Shift-3 Right/back
Shift-6 Right
Shift-9 Right/forward

Besides, there are several more options for adapting display on screen:

Tab. 3:Display options

Key Action
P Toggle instrument panel on/off
s Cycle panel style full/mini
Shift-F5/F6 Shift the panel in y direction
Shift-F7/F8 Shift the panel in x direction
Shift-F3 Read a panel from a property list
i/I Minimize/maximize HUD
h/H Change color of HUD/toggle HUD off

forward/backward
Ctrl + O/P Tilt view down/up
x/X Zoom in/out
v Cycle view modes
W Toggle full screen mode on/off (3dfx only)
z/Z Change visibility (fog) forward/backward
F8 Toggle fog on/off
F2 Refresh Scenery tile cache
F4 Force Lighting update
F9 Toggle texturing on/off
F10 Toggle menu on/off

The autopilot is controlled via the following keys:

Tab. 4:Autopilot and related controls.

Key Action
Ctrl + A Altitude hold toggle on/off
Ctrl + G Follow glide slope 1 toggle on/off
Ctrl + H Heading hold toggle on/off
Ctrl + N Follow NAV 1 radial toggle on/off
Ctrl + S Autothrottle toggle on/off
Ctrl + T Terrain follow toggle on/off
Ctrl + U Add 1000 ft. to your altitude (emergency)
F6 Toggle autopilot target:

current heading/waypoint
F11 Autopilot altitude dialog
F12 Autopilot heading dialog

Ctrl + T is especially interesting as it makes your Cessna 172 behave like a cruise
missile. Ctrl + U might be handy in case you feel you’re just about to crash.
(Shouldn’t real planes sport such a key, too?)

In case the autopilot is enabled, some of the numeric keypad keys get a special
meaning:
Tab. 5:Special action of keys, if autopilot is enabled.

Key Action
8 / 2 Altitude adjust
0 / , Heading adjust
9 / 3 Auto Throttle adjust

There are several keys for starting and controlling the engine :
Tab. 6:Engine control keys

Key Action
SPACE Fire starter on selected engine(s)
! Select 1st engine
@ Select 2nd engine
Select 3rd engine
$ Select 4th engine
{ Decrease Magneto on Selected Engine
} Increase Magneto on Selected Engine
∼ Select all Engines

Beside these basic keys there are miscelleneous keys for special actions; some
of these you’ll probably not want to try during your first flight:
Tab. 7:Miscellaneous keyboard controls.

Key Action
B Toggle parking brake on/off
b Apply/release all brakes
g Toggle landing gear down
, Left gear brake (useful for differential braking)
. Right gear brake (useful for differential braking)
]/[Extend/Retract flaps
p Toggle pause on/off
a/A Speed up/slow down (time acceleration)
t/T Time speed up/slow down
m/M Change time offset (warp) used by t/T forward/backward
Shift-F2 Save current flight tofgfs.sav
Shift-F1 Restore flight fromfgfs.sav
F3 Save screen shot underfgfs-screen.ppm
Shift-F4 Re-read global preferences frompreferences.xml
Shift-F10 Toggle data logging of FDM on/off
ESC Exit program

Note: If you have difficulty processing the screenshotfgfs-screen.ppm on a
windows machine, just recall that simply pressing the ”Print” key copies the screen
to the clipboard, from which you can paste it into any graphics program.

Finally: Starting fromFlightGear 0.7.7 these key bindings are no longer hard
coded, but user-adjustable. You can check and change these setting via the file
keyboard.xml to be found in the mainFlightGear directory. This is a human
readable plain ASCII file. Although it’s perhaps not the best idea for beginners to
start just with modifying this file, more advanced users will find it useful to change
key bindings according to what they like (or, perhaps, know from other simulators).

5.3 Menu entries

By default, the menu is disabled after starting the simulator (you don’t see a menu
in a real plane, do you?). You can turn it on either using the toggle F10 or just by
moving the mouse pointer to the top left corner of the display. In casse you want
the menu to disappear just hit F10 again or move the mouse to the bottom of the
screen.

At present, the menu provides the following functions.

• File

– Save flightSaves the current flight, by default tofgfs.sav .

– Load flight Loads the current flight, by default fromfgfs.sav .

– ResetResets you to the selected starting position. Comes handy in case
you got lost or something went wrong.

– Hires Snap ShotSaves a high resolution Screen Shot under
fgfs-screen-XXX.ppm .

– Snap ShotSaves a normal resolution Screen Shot under
fgfs-screen-XXX.ppm .

– Exit Exits the program.

• View

– Toggle PanelToggles instrument panel on/off.

– Pilot Offset Allows setting a different viewpoint (useful for R/C fly-
ing).

– HUD Alpha Toggles antialiasing of HUD lines on/off.

– PropertiesProvies access to numerous properies managed viaFlight-
Gear’s property manager. This is actually a quite powerful tool allow-
ing to set all the values in the property tree. Obviously, this is a good
place to crash the program by entering a ”bad” value.

• Environment

– Goto Airport Enter the airport ID. For details on how to get the IDs
see Section 4.4.5.

• Autopilot

– Set HeadingSets heading manually.

– Set Altitude Sets altitude manually.

– Add Waypoint Adds waypoint to waypoint list.

– Skip Current Waypoint Self explaining.

– Clear RouteClears current route.

– Adjust AP SettingsAllows input of several autopilot parameters.

– Toggle HUD format Toggles figures of latitude/longitude in HUD.

• Network (supposes compile option--with-network-olk)

– Toggle DisplayToggle call sign etc. on/off.

– Enter Callsign Enter your call sign.

– Scan for DaemonsScan for daemons on the net.

– Register for FGDRegister forFlightGear Daemon.

– Unregister for FGD Unregister fromFlightGear Daemon.

• Help

– HelpShould bring up this FlightGear Getting Started Guide. At present
not yet fully implemented. Under windows this works via a batch file
webrun.bat under/flightgear . If you intend to use that feature
you may have to editwebrun.bat . Under UNIX a comparable shell
script might do.

5.4 The Instrument Panel

The Cessna instrument panel is activated by default when you startFlightGear, but
can be de-activated by pressing the ”P” key. While a complete description of all
the functions of the instrument panel of a Cessna is beyond the scope of this guide,
we will at least try to outline the main flight instruments or gauges.

All panel levers and knobs can be operated with the mouse To change a control,
just click with the left/middle mouse button on the corresponding knob/lever.

Fig. 5: The panel.

Let us start with the most important instruments any simulator pilot must know.
In the center of the instrument panel (Fig. 5), in the upper row, you will find the
artificial horizon (attitude indicator) displaying pitch and bank of your plane. It has
pitch marks as well as bank marks at 10, 20, 30, 60, and 90 degrees.

Left to the artificial horizon, you’ll see the airspeed indicator. Not only does it
provide a speed indication in knots but also several arcs showing characteristic ve-
locity rages you have to consider. At first, there is a green arc indicating the normal
operating range of speed with the flaps fully retracted. The white arc indicates the
range of speed with flaps in action. The yellow arc shows a range, which should

only be used in smooth air. The upper end of it has a red radial indicating the speed
you must never exceeded - at least as long as you wan’t brake your plane.

Below the airspeed indicator you can find the turn indicator. The airplane in
the middle indicates the roll of your plane. If the left or right wing of the plane is
aligned with one of the marks, this would indicate a standard turn, i.e. a turn of
360 degrees in exactly two minutes.

Below the plane, still in the turn indicator, is the inclinometer. It indicates
if rudder and ailerons are coordinated. During turns, you always have to operate
aileron and rudder in such a way that the ball in the tube remains centered; other-
wise the plane is skidding. A simple rule says: ”Step onto the ball”, i.e. step onto
the left rudder pedal in case the ball is on the l.h.s.

If you don’t have pedals or lack the experience to handle the proper ratio
between aileron/rudder automatically, you can startFlightGear with the option
--enable-auto-coordination .

To the r.h.s of the artificial horizon you will find the altimeter showing the
height above sea level (not ground!) in hundreds of feet. Below the altimeter is the
vertical speed indicator indicating the rate of climbing or sinking of your plane in
hundreds of feet per minute. While you may find it more convenient to use then
the altimeter in cases, keep in mind that its diplay usually has a certain lag in time.

Further below the vertical speed indicator is the RPM (rotations per minute)
indicator, which displays the rotations per minute in 100 RPMs. The green arc
marks the optimum region for long-time flight.

The group of the main instruments further includes the gyro compass being
situated below the artificial horizon. Besides this one, there is a magnetic compass
sitting on top of the panel.

Four of these gauges being arranged in the from of a ”T” are of special impor-
tance: The air speed indicator, the artificial horizon, the altimeter, and the compass
should be scanned regularly during flight.

Besides these, there are several supplementary instruments. To the very left you
will find the clock, obviously being an important tool for instance for determining
turn rates.Below the clock there are several smaller gauges displaying the technical
state of your engine. Certainly the most important of them is the fuel indicator - as
any pilot should know.

The ignition switch is situated in the lower left corner of the panel (cf. Fig. 4).
It has five positions: ”OFF”, ”L”, ”R”, ”BOTH”, and ”START”. The first one is
obvious. ”L” and ”R” do not refer to two engines (actually the Cessna does only
have one) but to two magnetos being present for safety purposes. The two switch
positions can be used for test puposes during preflight. During normal flight the
switch should point on ”BOTH”. The extreme right position is for using a battery-
powered starter (to be operated with the SPACE key in flight gear).

Like in most flight simulators, you actually get a bit more than in a real plane.
The red field directly below the gyro compass displays the state of the brakes, i.e.,
it is lit in case of the brakes being engaged. The instruments below indicate the
position of youryoke. This serves as kind of a compensation for the missing forces
you feel while pushing a real yoke. Three of the arrows correspond to the three axes
of your yoke/pedal controlling nose up/down, bank left/right, rudder left/right, and
throttle. (Keep in mind: They donot reflect the actual position of the plane!) The
left vertical arrow indicates elevator trim.

The right hand side of the panel is occupied by the radio stack. Here you find
two VOR receivers (NAV), an NDB receiver (ADF) and two communication radios
(COMM1/2) as well as the autopilot.

The communication radio is used for communication with air traffic facil-
ities; it is just a usual radio transceiver working in a special frequency range.
The frequency is displayed in the ”COMM” field. Usually there are two COM
transceivers; this way you can dial in the frequency of the next controller to con-
tact while still being in contact with the previous one.

The COM radio can be used to display ATIS messages as well. For this pur-
pose, just to dial in the ATIS frequency of the relevant airport.

The VOR (Very High Frequency Omni-Directional Range) receiver is used
for course guidance during flight. The frequency of the sender is displayed in
the ”NAV” field. In a sense, a VOR acts similarly to a light house permitting to
display the position of the aircraft on a radial around the sender. It transmits one
omni-directional ray of radio waves plus a second ray, the phase of which differs
from the first one depending on its direction (which may be envisaged as kind of a
”rotating” signal). The phase difference between the two signals allows evaluating
the angle of the aircraft on a 360 degrees circle around the VOR sender, the so-
called radial. This radial is then displayed on the gauges NAV1 and NAV2, resp.,
left to frequency field. This way it should be clear that the VOR dispaly, while
indicating the position of the aircraft relative to the VOR sender, does not say
anything about the orientation of the plane.

Below the two COM/NAV devices is an NDB receiver called ADF (automatic
direction finder). Again there is a field displaying the frequency of the facility. The
ADF can be used for navigation, too, but contrary to the VOR does not show the
position of the plane in a radial relative to the sender but the direct heading from the
aircraft to the sender. This is displayed on the gauge below the two NAV gauges.

Above the COMM1 display you will see three LEDs in the colors blue, amber,
and white indicating the outer, middle, and, inner, resp. marker beakon. These
show the distance to the runway threshold during landing. They to not require the
input of a frequency.

Below the radios you will find the autopilot. It has five keys for WL = ”Wing-

Leveler”, ”HDG” = ”Heading”, NAV, APR = ”Glide-Slope”, and ALT = ”Altitude”.
These keys when engaged hold the corresponding property.

A detailed description of the workings of these instruments and their use for
navigation lies beyond this Guide; if you are interested in this exciting topic, we
suggest consulting a book on instrument flight (simulation). Besides, this would
be material for a yet to be writtenFlightGear Flight School.

It should be noted, that you can neglect these radio instruments as long as
you are strictly flying according to VFR (visual flight rules). For those wanting
to do IFR (instrument flight rules) flights, it should be mentioned thatFlightGear
includes a huge database of navaids worldwide.

Finally, you find the throttle, mixture, and flap control in the lower right of the
panel (recall, flaps can be set via[and] or just using the mouse).

As with the keyboard, the panel can be re-configured using configuration files.
As these have to be plane specific, they can be found under the directory of the
corresponding plane. As an example, the configuration file for the default Cessna
C172 can be found atFlightGear/Aircraft/c172/Panels as c172-panel.xml.
The accompanying documentation for customizing it (i.e. shifting, replacing etc.
gauges and more) is contained in the fileREADME.xmlpanel written by John
Check, to be found in the source code in the directorydocs-mini .

5.5 The Head Up Display

At current, there are two options for reading off the main flight parameters of the
plane: One is the instrument panel already mentioned, while the other one is the
HUD (HeadUp Display) . Neither are HUDs used in usual general aviation planes
nor in civilian ones. Rather they belong to the equipment of modern military jets.
However, some might find it easier to fly using the HUD even with general aviation
aircraft. Several Cessna pilots might actually love to have one, but technology is
simply too expensive for implementing HUDs in general aviation aircraft. Besides,
the HUD displays several useful figures characterizing simulator performance, not
to be read off from the panel.

The HUD shown in Fig. 6 displays all main flight parameters of the plane. In
the center you find the pitch indicator (in degrees) with the aileron indicator above
and the rudder indicator below. A corresponding scale for the elevation can be
found to the left of the pitch scale. On the bottom there is a simple turn indicator.

There are two scales at the extreme left: The inner one displays the speed (in
kts) while the outer one indicates position of the throttle. The Cessna 172 takes off
at around 55 kts. The two scales on the extreme r.h.s display your height, i. e. the
left one shows the height above ground while the right of it gives that above zero,

both being displayed in feet.
Besides this, the HUD delivers some additions information. On the upper left

you will find date and time. Besides, latitude and longitude, resp., of your current
position are shown on top.

You can change color of theHUD using the ”H” or ”h” key. Pressing ethe
toggle ”i/I” minimizes/maximizes the HUD.

Fig. 6: The HUD, or Head Up Display.

5.6 Mouse controlled actions

Besides just clicking the menues, your mouse has got certain valuable functions in
FlightGear.

There are three mouse modi. In the normal mode (pointer curser) panel’s
controls can be operated with the mouse. To change a control, click with the
left/middle mouse button on the corresponding knob/lever. While the left mouse
button leads to small increments/decrements, the middle one makes greater ones.
Clicking on the left hand side of the knob/lever decreases the value, while clicking
on the right hand side increases it.

Right clicking the mouse activates the simulator control mode (cross hair cur-
sor). This allows control of aileron/elevator via the mouse in absence of a joy-
stick/yoke (enable--enable-auto-coordination in this case). If you have
a joystick you certainly will not make use of this mode

Right clicking the mouse another time activates the view control mode (arrow
cursor). This allows changing direction of view, i.e. pan and tilt the view, via the
mouse.

Right clicking the mouse once more resets it into the initial state.
If you are looking for some interesting places to discover withFlightGear

(which may or may not require downloading additional scenery) you may want to
check

http://www.flightgear.org/Places/.

There is now a menu entry for entering directly the airport code of the airport you
want to start from.

Finally, if you’re done and are about to leave the plane, just hit the ESC key or
use the corresponding menu entry to exit the program. It is not suggested to simply
”kill” the simulator by clicking the text window.

5.7 Some further reading for pilot students

In view of that fact, that there is not yet aFlightGear specific flight course, here
are some useful hints to texts for those who want to learn piloting a plane.

First, a quite comprehensive manual is the Aeronautical Information Manual,
published by the FAA, and being online available at

http://www.faa.gov/ATPubs/AIM/.

This is the Official Guide to Basic Flight Information and ATC Procedures by the
FAA. It contains a lot of information on flight rules, flight safety, navigation, and
more. If you find this a bit too hard reading, you may prefer the FAA Training
Book,

http://avstop.com/AC/FlightTraingHandbook/,

which covers all aspects of flight, beginning with the theory of flight and the work-
ing of airplanes, via procedures like takeoff and landing up to emergency situations.
This is an ideal reading for those who want to learn some basics on flight but don’t
(yet) want to spend bucks on getting a costly paper pilot’s handbook.

While the handbook mentioned above is an excellent introduction on VFR (vi-
sual fligtht rules), it does not include flying according to IFR (instrument flight

http://www.flightgear.org/Places/
http://www.faa.gov/ATPubs/AIM/
http://avstop.com/AC/FlightTraingHandbook/

rules). However, an excellent introduction into navigation and flight according to
Instrument Flight Rules written by Charles Wood can be found at

http://www.navfltsm.addr.com/.
Another comprehensive but yet readable text is John Denker’s ”See how it

flies”, available at

http://www.monmouth.com/ jsd/how/htm/title.html.

This is a real online text book, beginning with Bernoulli’s principle, drag and
power, and the like, with the later chapters covering even advanced aspects of VFR
as well as IFR flying

http://www.navfltsm.addr.com/
http://www.monmouth.com/~jsd/how/htm/title.html

Part III

Appendices

61

Appendix A

Missed approach: If anything
refuses to work

In the following section, we tried to sort some problems according to operating
system, but if you encounter a problem, it may be a wise idea to look beyond
”your” operating system – just in case. If you are experiencing problems, we would
strongly advise you to first check the FAQ maintained by Cameron Moore at

http://www.flightgear.org/Docs/FlightGear-FAQ.html.
Moreover, the source code contains a directorydocs-mini containing nu-

merous ideas on and solutions to special problems. This is also a good place to go
for further reading.

A.1 FlightGear Problem Reports

The best place to look for help is generally the mailing lists, specifically the[Flightgear-
User] mailing list. If you happen to be running a CVS version ofFlightGear, you
may want to subscribe to the[Flightgear-Devel] list. Instructions for subscription
can be found at

http://www.flightgear.org/mail.html.

It’s often the case that someone has already dealt with the issue you’re dealing
with, so it may be worth your time to search the mailing list archives at

http://www.mail-archive.com/flightgear-users%40flightgear.org/
http://www.mail-archive.com/flightgear-devel%40flightgear.org/.

There are numerous developers and users reading the lists, so questions are gener-
ally answered. However, messages of the type

62

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/mail.html

FlightGear does not compile on my system. What shall I do?
are hard to answer without any further detail given, aren’t they? Here are some
things to consider including in your message when you report a problem:

• Operating system:(Linux Redhat 7.0. . . /Windows 98SE. . .)

• Computer: (Pentium III, 1GHz. . .)

• Graphics board/chip: (Diamond Viper 770/NVIDIA RIVA TNT2. . .)

• Compiler/version: (Cygnus version 1.0. . .)

• Versions of relevant libraries: (PLIB 1.2.0, Mesa 3.0. . .)

• Type of problem: (Linker dies with message. . .)

• Steps to recreate the problem:Start at KSFO, turn off brakes . . .

One final remark: Please avoid posting binaries to these lists! List subscribers
are widely distributed, and some users have low bandwidth and/or metered connec-
tions. Large messsages may be rejected by the mailing list administrator. Thanks.

A.2 General problems

• FlightGear runs SOOO slow.
If FlightGear says it’s running with something like 1 fps (frame per second)
or below you typically don’t have working hardware OpenGL support. There
may be several reasons for this. First, there may be no OpenGL hardware
drivers available for older cards. In this case it is highly recommended to get
a new board.

Second, check if your drivers are properly installed. Several cards need addi-
tional OpenGL support drivers besides the ”native” windows ones. For more
detail check Appendix B.

• Eitherconfigure or make dies with not foundPLIB headers or libraries.
Make sure you have the latest version ofPLIB (> version 1.2) compiled and
installed. Its headers likepu.h have to be under/usr/include/plib
and its libraries, likelibplibpu.a should be under/lib . Double check
there are no strayPLIB headers/libraries sitting elsewhere!

Besides check careful the error messages ofconfigure . In several cases
it says what is missing.

A.3 Potential problems under Linux

Since we don’t have access to all possible flavors of Linux distributions, here are
some thoughts on possible causes of problems. (This Section includes contribu-
tions by Kai Troester.)

• Wrong library versions
This is a rather common cause of grief especially when you prefer to install
the libraries needed byFlightGear by hand. Be sure that especially the
Mesa library contains support for the 3DFX board and that GLIDE libraries
are installed and can be found. If aldd ‘which fgfs‘ complains about
missing libraries you are in trouble.

You should also be sure toalways keep thelatest version ofPLIB on your
system. Lots of people have failed miserably to compileFlightGear just
because of an outdated plib.

• Missing permissions
In case you are using XFree86 before release 4.0 theFlightGear binary may
need to be setuid root in order to be capable of accessing some accelerator
boards (or a special kernel module as described earlier in this document)
based on 3DFX chips. So you can either issue a

chown root.root /usr/local/bin/fgfs ;
chmod 4755 /usr/local/bin/fgfs

to give theFlightGear binary the proper rights or install the 3DFX module.
The latter is the “clean” solution and strongly recommended!

• Non-default install options
FlightGear will display a lot of diagnostics while starting up. If it com-
plains about bad looking or missing files, check that you installed them in
the way they are supposed to be installed (i.e. with the latest version and in
the proper location). The canonical locationFlightGear wants its data files
under/usr/local/lib . Be sure to grab the latest versions of everything
that might be needed!

• Compile problems in general
Make sure you have the latest (official) version of gcc. Old versions of gcc
are a frequent source of trouble! On the other hand, some versions of the
RedHat 7.0 reportedly have certain problems compilingFlightGear as they
include a preliminary version of GCC.

• Problems with linking
There may be several reasons; however in case you get a message like

libmk4.so.0 : cannot open shared object file

the reason is a missing library package called Metakit. This is provided with
Simgear in packed form. Unpack and install it first.

A.4 Potential problems under Windows

• The executable refuses to run.
You may have tried to start the executable directly either by double-clicking
fgfs.exe in Windows Explorer or by invoking it within a MS-DOS shell.
Double-clicking via Explorer does never work (unless you set the environ-
ment variableFG ROOTin autoexec.bat or otherwise). Rather double-
click runfgfs.bat . For more details, check Chapter 4.

Another cause of grief might be that you did not download the most recent
versions of the base package files required byFlightGear, or you did not
download any of them at all. Have a close look at this, as the scenery/texture
format is still under development and may change frequently. For more de-
tails, check Chapter 3.

Next, if you run into trouble at runtime, do not use windows utilities for
unpacking the.tar.gz . If you did, try it in the Cygnus shell withtar
xvfz instead.

• FlightGear ignores the command line parameters.
There is a problem with passing command line options containing a ”=” to
windows batch files. Instead, include the options intorunfgfs.bat .

• I am unable to buildFlightGear under MSVC/MS DevStudio.
By default,FlightGear is build with GNU GCC. The Win32 port of GNU
GCC is known as Cygwin. For hints on Makefiles required for MSVC for
MSC DevStudio have a look into

ftp://www.flightgear.org/pub/flightgear/Source/.

In principle, it should be possible to compileFlightGear with the project
files provided with the source code.

• Compilation ofFlightGear dies.
There may be several reasons for this, including true bugs. However, before
trying to do anything else or report a problem, make sure you have the latest

ftp://www.flightgear.org/pub/flightgear/Source/

version of theCygwincompiler, as described in Section 2. In case of doubt,
startsetup.exe anew and download and install the most recent versions
of bundles as they possibly may have changed.

Appendix B

Some words on OpenGL graphics
drivers

FlightGear’s graphics engine is based on a graphics library called OpenGL. Its pri-
mary advantage is its platform independence, i. e., programs written with OpenGL
support can be compiled and executed on several platforms, given the proper drivers
having been installed in advance. Thus, independent of if you want to run the bina-
ries only or if you want to compile the program yourself you must have some sort
of OpenGL support installed for your video card.

A good review on OpenGL drivers can be found at

http://www.flightgear.org/Hardware.

Specific information is collected for windows at

http://www.x-plane.com/SYSREQ/v5ibm.html

and for Macintosh at

http://www.x-plane.com/SYSREQ/v5mac.html.

An excellent place to look for documentation about Linux and 3-D accelerators is
theLinux Quake HOWTOat

http://www.linuxquake.com.

This should be your first aid in case something goes wrong with your Linux 3-D
setup.

Unfortunately, there are so many graphics boards, chips and drivers out there
that we are unable to provide a complete description for all systems. Given the
present market dominance of NVIDIA combined with the fact that their chips
have indeed been proven powerful for runningFlightGear, we will concentrate
on NVIDIA drivers in what follows.

67

http://www.flightgear.org/Hardware
http://www.x-plane.com/SYSREQ/v5ibm.html
http://www.x-plane.com/SYSREQ/v5mac.html
http://www.linuxquake.com

B.1 NVIDIA chip based cards under Linux

Recent Linux distributions include and install anything needed to run OpenGL
programs under Linux. Usually there is no need to install anything else.

If for whatever reason this does not work, you may try to download the most
recent drivers from the NVIDIA site at

http://www.nvidia.com/Products/Drivers.nsf/Linux.html

At present, this page has drivers for all NVIDIA chips for the following Linux dis-
tributions: RedHat 7.1, Redhat 7.0, Redhat 6.2, Redhat 6.1, Mandrake 7.1, Man-
drake 7.2, SuSE 7.1, SuSE 7.0 in several formats (.rpm, .tar.gz). These drivers
support OpenGL natively and do not need any additional stuff.

The page named above contains a detailedREADME and Installation
Guide giving a step-by-step description, making it unnecessary to copy the mate-
rial here.

B.2 NVIDIA chip based cards under Windows

Again, you may first try the drivers coming with your graphics card. Usually they
should include OpenGL support. If for whatever reason the maker of your board
did not include this feature into the driver, you should install the Detonator refer-
ence drivers made by NVIDIA (which might be a good idea anyway). These are
available in three different versions (Windows 95/98/ME, Windows 2000, Win-
dows NT) from

http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

Just read carefully the Release notes to be found on that page. Notably do not
forget to uninstall your present driver and install a standard VGA graphics adapter
before switching to the new NVIDIA drivers first.

B.3 3DFX chip based cards under Windows

With the Glide drivers no longer provided by 3DFX there seems to be little chance
to get it running (except to find older OpenGL drivers somewhere on the net or
privately). All pages which formerly provided official support or instructions for
3DFX are gone now. For an alternative, you may want to check the next section,
though.

http://www.nvidia.com/Products/Drivers.nsf/Linux.html
http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

B.4 An alternative approach for Windows users

There is now an attempt to build a program which detects the graphics chip on your
board and automatically installs the appropriate OpenGL drivers. This is called
OpenGL Setup and is presently in beta stage. It’s home page can be found at

http://www.glsetup.com/.

We did not try this ourselfes, but would suggest it for those completely lost.

B.5 3DFX chip based cards under Linux

Notably, with 3DFX now having been taken over by NVIDIA, manufacturer’s sup-
port already has disappeared. However with XFree86-4.x (with x at least being
greater than 1) Voodoo3 cards are known to be pretty usable in 16 bit colour mode.
Newer cards should work fine as well. If you are still running a version of Xfree86
3.X and run into problems, consider an upgrade. The recent distributions by De-
bian or SuSE have been reported to work well.

B.6 ATI chip based cards under Linux

There is excellent support for ATI chips in XFree86-4.1 and greater. Lots of AGP
boards based on the Rage128 chip - from simple Rage128 board to ATI Xpert2000
- are pretty usuable for FlightGear. Since XFree86-4.1 you can use early Radeon
chips - up to Radeon7500 with XFree86-4.2.

B.7 Building your own OpenGL support under Linux

Setting up proper OpenGL support with a recent Linux distribution should be pretty
simple. As an example SuSE ships everything you need plus some small shell
scripts to adjust the missing bits automagically. If you just want to execute pre-
built binaries of FlightGear, then you’re done by using the supplied FlightGear
package plus the mandantory runtime libraries (and kernel modules). The package
manager will tell you which ones to choose.

In case you want to run a selfmade kernel, you want to compile FlightGear
yourself, you’re tweaking your X server configuration file yourself or you even run
a homebrewn Linux ”distribution” (this means, you want to compile everything
yourself), this chapter might be useful for you.

Now let’s have a look at the parts that build OpenGL support on Linux. First
there’s a Linux kernel with support for your graphics adapter.

http://www.glsetup.com/

Examples on which graphics hardware is supported natively by Open Source
drivers are provided on

http://dri.sourceforge.net/status.phtml.

There are a few graphics chip families that are not directly or no more than
partly supported by XFree86, the X window implementation on Linux, because
vendors don’t like to provide programming information on their chips. In these
cases - notably IBM/DIAMOND/now: ATI FireGL graphics boards and NVIDIA
GeForce based cards - you depend on the manufacturers will to follow the on-
going development of the XFree86 graphics display infrastructure. These boards
might prove to deliver impressing performance but in many cases - considering the
CPU’s speed you find in today’s PC’s - you have many choices which all lead to
respectable performance of FlightGear.

As long as you use a distribution provided kernel, you can expect to find all
necessary kernel modules at the approriate location. If you compile the kernel
yourself, then you have to take care of two submenues in the kernel configuration
menue. You’ll find them in the ”Character devices” menue. Please notice that AGP
support is not compulsory for hardware accelerated OpenGL support on Linux.
This also works quite fine with some PCI cards (3dfx Voodoo3 PCI for example,
in case you still own one). Although every modern PC graphics card utilizes the
AGP ’bus’ for fast data transfer.

Besides ”AGP Support” for your chipset - you might want to ask your main-
board manual which one is on - you defnitely want to activate ”Direct Rendering
Manager” for your garphics board. Please note that recent releases of XFree86 -
namely 4.1.0 and higher might not be supported by the DRI included in older Linux
kernels. Also newer 2.4.x kernels from 2.4.8 up to 2.4.17 do not support DRI in
XFree86-4.0.x.

After building and installing your kernel modules and the kernel itself this task
might be completed by loading the ’agpgart’ module manually or, in case you
linked it into the kernel, by a reboot in purpose to get the new kernel up and run-
ning. While booting your kernel on an AGP capable mainboard you may expect
boot messages like this one:

> Linux agpgart interface v0.99 (c) Jeff Hartmann
> gpgart: Maximum main memory to use for agp memory: 439M
> agpgart: Detected Via Apollo Pro chipset
> agpgart: AGP aperture is 64M @ 0xe4000000

If you don’t encounter such messages on Linux kernel boot, then you might
have missed the right chipset. Part one of activation hardware accelerated OpenGL
support on your Linux system is now completed.

http://dri.sourceforge.net/status.phtml

The second part consists of configuring your X server for OpenGL. This is not
a big deal as it simply consists of to instructions to load the appropriate mod-
ules on startup of the X server. This is done by editing the configuration file
/etc/X11/XF86Config . Today’s Linux distributions are supposed to provide
a tool that does this job for you on your demand. Please make shure there are these
two instructions:

Load ’’glx’’
Load ’’dri’’

in the ”Module” section your X server configuration file. If everything is right the
X server will take care of loading the appropriate Linux kernel module for DRI
support of your graphics card. The right Linux kernel module name is determined
by the ’Driver’ statement in the ”Device” section of the XF86Config. Please see
three samples on how such a ”Device” section should look like:

Section ’’Device’’
BoardName ’’3dfx Voodoo3 PCI’’
BusID ’’0:8:0’’
Driver ’’tdfx’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’3Dfx’’

EndSection

Section ’’Device’’
BoardName ’’ATI Xpert2000 AGP’’
BusID ’’1:0:0’’
Driver ’’ati’’
Option ’’AGPMode’’ ’’1’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’ATI’’

EndSection

Section ’’Device’’
BoardName ’’ATI Radeon 32 MB DDR AGP’’
BusID ’’1:0:0’’
Driver ’’radeon’’
Option ’’AGPMode’’ ’’4’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’ATI’’

EndSection

By using the Option ”AGPMode” you can tune AGP performance as long as
the mainboard and the graphics card permit. The BusID on AGP systems should
always be set to ”1:0:0” - because you only have one AGP slot on your board -
whereas the PCI BusID differs with the slot your graphics card has been applied
to. ’lspci’ might be your friend in desperate situations. Also a look at the end of
/var/log/XFree86.0.log, which should be written on X server startup, should point
to the PCI slot where your card resides.

This has been the second part of installing hardware accelerated OpenGL sup-
port on your Linux box.

The third part carries two subparts: First there are the OpenGL runtime li-
braries, sufficient to run existing appliactions. For compiling FlightGear you also
need the suiting develoment headers. As compiling the whole X window system
is not subject to this abstract we expect that your distribution ships the necessary
libraries and headers. In case you told your package manager to install some sort
of OpenGL support you are supposed to find some OpenGL test utilities, at least
there should be ’glxinfo’ or ’gl-info’.

These commandline utilities are useful to say if the previous steps where suc-
cessfull. If they refuse to start, then your package manager missed something
because he should have known that these utilities usually depend on the existence
of OpenGL runtime libraries. If they start, then you’re one step ahead. Now watch
the output of this tool and and have a look at the line that starts with

OpenGL renderer string:
If you find something like

OpenGL renderer string: FireGL2 / FireGL3 (Pentium3)

or

OpenGL renderer string: Mesa DRI Voodoo3 20000224

or

OpenGL renderer string: Mesa DRI Radeon 20010402
AGP 4x x86

OpenGL renderer string: Mesa GLX Indirect

mind the word ’Indirect’, then it’s you who missed something, because OpenGL
gets dealt with in a software library running solely on your CPU. In this case you
might want to have a closer look at the preceding paragraphs of this chapter. Now
please make shure all necessary libraries are at their proper location. You will need

three OpenGL libraries for running FlightGear. In most cases you will find them
in /usr/lib/:

/usr/lib/libGL.so.1
/usr/lib/libGLU.so.1
/usr/lib/libglut.so.3
These may be the libraries itself or symlinks to appropriate libraries located

in some other directories. Depending on the distribution you use these libraries
might be shipped in different packages. SuSE for example ships libGL in pack-
age ’xf86glx’, libGLU in ’xf86glu’ and libglut in ’mesaglut’. Additionally for
FlightGear you need libplib which is part of the ’plib’ package.

For compiling FlightGear yourself - as already mentioned - you need the ap-
propriate header files which often reside in /usr/include/GL/. Two are necessary
for libGL and they come in - no, not ’xf86glx-devel’ (o.k., they do but they do not
work correctly) but in ’mesa-devel’:

/usr/include/GL/gl.h
/usr/include/GL/glx.h

One comes with libGLU in ’xf86glu-devel’:

/usr/include/GL/glu.h

and one with libglut in ’mesaglut-devel’

/usr/include/GL/glut.h

The ’plib’ package comes with some more libraries and headers that are too
many to be mentioned here. If all this is present and you have a comfortable com-
piler environment, then you are ready to compile FlightGear and enjoy the result.

Further information on OpenGL issues of specific XFree86 releases is avaliable
here:

http://www.xfree86.org/<RELEASE NUMBER>/DRI.html

Additional reading on DRI:

http://www.precisioninsight.com/piinsights.html

In case you are missing some ’spare parts’:

http://dri.sourceforge.net/res.phtml

B.8 OpenGL on MacIntosh

OpenGL is pre-installed on Mac OS 9.x and later. You may find a newer version
than the one installed for Mac OS 9.x at

http://www.precisioninsight.com/piinsights.html
http://dri.sourceforge.net/res.phtml

http://www.apple.com/opengl

You should receive the updates automatically for Mac OX 10.x.
One final word: We would recommend that you test your OpenGL support with
one of the programs that accompany the drivers, to be absolutely confident that it
is functioning well. There are also many little programs, often available as screen
savers, that can be used for testing. It is important that you are confident in your
graphics acceleration becauseFlightGearwill try to run the card as fast as possible.
If your drivers aren’t working well, or are unstable, you will have difficulty tracking
down the source of any problems and have a frustrating time.

http://www.apple.com/opengl

Appendix C

Landing: Some further thoughts
before leaving the plane

C.1 A not so Short History of FlightGear

TheFlightGear project goes back to a discussion among a group of net citizens in
1996 resulting in a proposal written by David Murr who, unfortunately, dropped
out of the project (as well as the net) later. The original proposal is still available
from theFlightGear web site and can be found under

http://www.flightgear.org/proposal-3.0.1.

Although the names of the people and several of the details have changed over
time, the spirit of that proposal has clearly been retained up to the present time.

Actual coding started in the summer of 1996 and by the end of that year es-
sential graphics routines were completed. At that time, programming was mainly
performed and coordinated by Eric Korpela from Berkeley University. Early code
ran under Linux as well as under DOS, OS/2, Windows 95/NT, and Sun-OS. This
was found to be quite an ambitious project as it involved, among other things, writ-
ing all the graphics routines in a system-independent way entirely from scratch.

Development slowed and finally stopped in the beginning of 1997 when Eric
was completing his thesis. At this point, the project seemed to be dead and traffic
on the mailing list went down to nearly nothing.

It was Curt Olson from the University of Minnesota who re-launched the project
in the middle of 1997. His idea was as simple as it was powerful: Why invent the
wheel a second time? There have been several free flight simulators available run-
ning on workstations under different flavors of UNIX. One of these, LaRCsim (de-
veloped by Bruce Jackson from NASA), seemed to be well suited to the approach.

75

http://www.flightgear.org/proposal-3.0.1

Curt took this one apart and re-wrote several of the routines such as to make them
build as well as run on the intended target platforms. The key idea in doing so was
to exploite a system-independent graphics platform: OpenGL.

Fig. 7: LaRCsim’s Navion is still available inFlightGear.

In addition, a clever decision on the selection of the basic scenery data was
made in the very first version.FlightGear scenery is created based on satellite data
published by the U. S. Geological Survey. These terrain data are available from

http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html

for the U.S., and

http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html,

resp., for other countries. Those freely accessible scenery data, in conjunction with
scenery building tools included withFlightGear, are an important feature enabling
anyone to create his or her own scenery.

This newFlightGear code - still largely being based on the original LaRCsim
code - was released in July 1997. From that moment the project gained momentum
again. Here are some milestones in the more recent development history:

• The display of sun, moon and stars have been a weak point for PC flight
simulators for a long time. It is one of the great achievements ofFlightGear
to include accurate modeling and display of sun, moon, and planets very
early. The corresponding astronomy code was implemented in fall 1997 by
Durk Talsma.

http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html
http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html

• Texture support was added by Curt Olson in spring 1998. This marked a
significant improvement in terms of reality. You may recall that Microsoft
Flight Simulator had non-textured scenery up until version 4.0. Some high-
quality textures were submitted by Eric Mitchell for theFlightGear project.

• A HUD (head up display) was added based on code provided by Michele
America and Charlie Hotchkiss in the fall of 1997 and was improved later
by Norman Vine. While not generally available for real Cessna 172, the
HUD conveniently reports the actual flight performance of the simulation
and may be of further use in military jets later.

• After improving the scenery and texture support frame rate dropped down to
a point whereFlightGear became unflyable in spring 1998. This issue was
resolved by exploiting hardware OpenGL support, which became available
at that time, and implementing view frustrum culling (a rendering technique
that ignores the part of the scenery not visible in a scene), done by Curt
Olson. Taking these measures madeFlightGear flyable again as long as
they included a 3-D graphics board that featured hardware OpenGL support.
With respect to frame rate one should keep in mind that the code, at present,
is in no way optimized, which leaves room for further improvements.

• A rudimentary autopilot implementing heading hold was contributed by Jeff
Goeke-Smith in April 1998. It was improved by the addition of an altitude
hold and a terrain following switch in October 1998 and further developed
by Norman Vine later.

• The basis for a menu system was laid based on another library, the Portable
Library PLIB , in June 1998. After having been idle for a time, the first
working menu entries came to life in spring 1999.

PLIB underwent rapid development later. It has been distributed as a sep-
arate package by Steve Baker with a much broader range of applications in
mind, since spring 1999. It has provided the basic graphics rendering engine
for FlightGear since fall 1999.

• Friedemann Reinhard developed early instrument panel code, which was
added in June 1998. Unfortunately, development of that panel slowed down
later, partly because of OpenGL compatibility problems. Finally, David
Megginson decided to rebuild the panel code from scratch in January 2000.
This led to a rapid addition of new instruments and features to the panel,
resulting in nearly all main instruments being included until spring 2001. A
handy minipanel was added in summer 2001.

• In 1998 there was basic audio support, i. e. an audio library and some
basic background engine sound. This was later integrated into the above-
mentioned portable library,PLIB . This same library was extended to sup-
port joystick/yoke/rudder in October 1999, again marking a huge step in
terms of realism. To adapt on different joystick, configuration options were
introduced in fall 2000.

• In September 1998 Curt Olson succeeded in creating a complete terrain
model for the U.S. The scenery is available worldwide via a clickable map
at:

http://www.flightgear.org/Downloads/world-scenery.html.

• Networking/multiplayer code has been integrated by Oliver Delise and Curt
Olson starting fall 1999. This effort is aimed at enablingFlightGear to run
concurrently on several machines over a network, either an Intranet or the In-
ternet, coupling it to a flight planner running on a second machine, and more.
There emerged several approaches for remotely controlling FlightGear over
a Network during 2001. Notably there was added support working together
wirth the ”Atlas” moving map program. Besides, an embedded HTTP server
developed late in 2001 by Curt Olson can now act a property manager for
external programs.

• Christian Mayer, together with Durk Talsma, contributed weather code in the
winter of 1999. This included clouds, winds, and even thunderstorms.

• Manually changing views in a flight simulator is in a sense always ”unreal”
but nonetheless required in certain situations. A possible solution was sup-
plied by Norman Vine in the winter of 1999 by implementing code for chang-
ing views using the mouse. Alternatively, you can use a hat switch for this
purpose, today.

• Finally, LaRCsims Navion was replaced as the default aircraft when the
Cessna 172 was stable enough in February 2000 - a move most users will
welcome. There are now several flight model options to choose from at run-
time: a modified and improved LaRCsim Cessna 172 developed by Tony
Peden, Jon Berndt’s X15, and Christian Mayer’s hot air balloon. Jon Berndt
has invested a lot of time in a more realistic and versatile flight model with
a more powerful aircraft configuration method.JSBSim, as it has come
to be called, may eventually replace LaRCsim as the default flight dynam-
ics model (FDM), and it is planned to include such features as fuel slosh

http://www.flightgear.org/Downloads/world-scenery.html

effects, turbulence, complete flight control systems, and other features not
often found all together in a flight simulator. As an alternative, Andy Ross
added another flight dynamics model calledYASim(Yet Another Flight Dy-
namics Simulator) which aims at simpliciy of use, by the end of 2001. This
one bought us flight modles for a 747, an A4, and a DC-3.

• The scenery was further improved by adding geographic features including
lakes, rivers, and coastlines later, an effort still going on. Since the end of
2000, there was again stronger focus on scenery. Textured runways were
added by Dave Cornish in spring 2001. Light textures add to the visual
impression at night. To cope with the constant growth of scenery data, a
binary scenery format was introduced in spring 2001.

• A fully operational radio stack and working radios were added to the panel
by Curt Olson in spring 2000. A huge database of Navaids contributed by
Robin Peel allows IFR navigation since then.

• A property manager was implemented by David Megginson in fall 2000. It
allows parsing a file called.fgfsrc under UNIX/Linux andsystem.fgfsrc
under Windows for input options. This plain ASCII file has proven useful
in submitting the growing number of input options, and notably the joystick
settings. This has proven a useful concept, and joystick, keyboard, and panel
settings are no longer hard coded but set using *.xml files since spring 2001
thanks to work mainly by David Megginson and John Check.

• There was support added for static objects to the scenery in 2001, which per-
mits placing buildung, static planes, trees and so on in the scenery. However,
despite a few profs systematic includion of these landmarks is still missing.

• There was basic ATC support added in fall 2001 by David Luff. This is not
yet fully implemented, but displaying ATIS messages is already possible.

• A magneto switch with proper functions was added at the end of 2001 by
John Check and David Megginson.. Actually, several panels were vastly
improved during 2001 by John and others.

During development there were several code reorganization efforts. Various
code subsystems were moved into packages. As a result, presetnly code is orga-
nized as follows:

The base of the graphics engine isOpenGL, a platform independent graphics
library. Based on OpenGL, the Portable LibraryPLIB provides basic rendering,
audio, joystick etc. routines. Based onPLIB is SimGear, which includes all of the

basic routines required for the flight simulator as well as for building scenery. On
top of SimGearthere are (i)FlightGear (the simulator itself), and (ii)TerraGear,
which comprises the scenery building tools.

This is by no means an exhaustive history and most likely some people who
have made important contributions have been left out. Besides the above-named
contributions there was a lot of work done concerning the internal structure by:
Jon S. Berndt, Oliver Delise, Christian Mayer, Curt Olson, Tony Peden, Gary R.
Van Sickle, Norman Vine, and others. A more comprehensive list of contributors
can be found in Chapter C as well as in theThanks file provided with the code.
Also, theFlightGear Website contains a detailed history worth reading of all of
the notable development milestones at

http://www.flightgear.org/News/

C.2 Those, who did the work

Did you enjoy the flight? In case you did, don’t forget those who devoted hundreds
of hours to that project. All of this work is done on a voluntary basis within spare
time, thus bare with the programmers in case something does not work the way
you want it to. Instead, sit down and write them a kind (!) mail proposing what
to change. Alternatively, you can subscribe to theFlightGear mailing lists and
contribute your thoughts there. Instructions to do so can be found at

http://www.flightgear.org/mail.html.

Essentially there are two lists, one of which being mainly for the developers and the
other one for end users. Besides, there is a very low-traffic list for announcements.

The following names the people who did the job (this information was essentially
taken from the fileThanks accompanying the code).

A1 Free Sounds(techie@mail.ev1.net)
Granted permission for the flightgear project to use some of the sound effects from
their site. Homepage under

Raul Alonzo (amil@las.es)
Mr. Alonzo is the author of Ssystem and provided his kind permission for using the
moon texture. Parts of his code were used as a template when adding the texture.
Ssystem Homepage can be found at:

http://www1.las.es/̃amil/ssystem.

http://www.flightgear.org/News/
http://www.flightgear.org/mail.html
mailto:techie@mail.ev1.net
http://www.a1freesoundeffects.com
mailto:amil@las.es
http://www1.las.es/~amil/ssystem

Michele America (nomimarketing@mail.telepac.pt)
Contributed to the HUD code.

Michael Basler (pmb@epost.de)
Author of Installation and Getting Started. Flight Simulation Page at

http://www.geocities.com/pmb.geo/flusi.htm

Jon S. Berndt (jsb@hal-pc.org)
Working on a complete C++ rewrite/reimplimentation of the core FDM. Initially he
is using X15 data to test his code, but once things are all in place we should be able
to simulate arbitrary aircraft. Jon maintains a page dealing with Flight Dynamics
at:

http://jsbsim.sourceforge.net

Special attention to X15 is paid in separate pages on this site. Besides, Jon con-
tributed via a lot of suggestions/corrections to this Guide.

Paul Bleisch(pbleisch@acm.org)
Redid the debug system so that it would be much more flexible, so it could be
easily disabled for production system, and so that messages for certain subsystems
could be selectively enabled. Also contributed a first stab at a config file/command
line parsing system.

Jim Brennan (jjb@kingmont.com)
Provided a big chunk of online space to store USA scenery forFlightGear.

Bernie Bright (bbright@c031.aone.net.au)
Many C++ style, usage, and implementation improvements, STL portability and
much, much more. Currently he is trying to create a BeOS port. Added threading
support and a threaded tile pager.

Bernhard H. Buckel (buckel@mail.uni-wuerzburg.de)
Contributed the README.Linux. Contributed several sections to earlier versions
of Installation and Getting Started.

Gene Buckle(geneb@deltasoft.com)
A lot of work gettingFlightGear to compile with the MSVC++ compiler. Numer-
ous hints on detailed improvements.

Ralph Carmichael (ralph@pdas.com)
Support of the project. The Public Domain Aeronautical Software web site at

http://www.pdas.com

has the PDAS CD-ROM for sale containing great programs for astronautical engi-
neers.

mailto:nomimarketing@mail.telepac.pt
mailto:pmb@epost.de
http://www.geocities.com/pmb.geo/flusi.htm
mailto:jsb@hal-pc.org
http://jsbsim.sourceforge.net
mailto:pbleisch@acm.org
mailto:jjb@kingmont.com
mailto:bbright@c031.aone.net.au
mailto:buckel@mail.uni-wuerzburg.de
mailto:geneb@deltasoft.com
mailto:ralph@pdas.com
http://www.pdas.com

Didier Chauveau (chauveau@math.univ-mlv.fr)
Provided some initial code to parse the 30 arcsec DEM files found at:

http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html.

John Check(j4strngs@rockfish.net)
John maintains the base package CVS repository. He contributed cloud textures,
wrote an excellent Joystick howto as well as a panel howto. Moreover, he con-
tributed new instrument panel configurations.FlightGear page at

http://rockfish.net/fg/.

Dave Cornish(dmc@halcyon.com)
Dave created new cool runway textures.

Oliver Delise (delise@mail.isis.de)
Started a FAQ, Documentation, Public relations. Working on adding some networking/multi-
user code. Founder of the FlightGear MultiPilot Project at

http://www.isis.de/members/˜odelise/progs/flightgear.

Jean-Francois Doue
Vector 2D, 3D, 4D and Matrix 3D and 4D inlined C++ classes. (Based on Graphics
Gems IV, Ed. Paul S. Heckbert)

http://www.animats.com/simpleppp/ftp/publichtml/topics/developers.html.

Dave Eberly (eberly@magic-software.com)
Contributed some sphere interpolation code used by Christian Mayer’s weather
data base system. On Dave’s web site there are tons of really useful looking code
at

http://www.magic-software.com.

Francine Evans(evans@cs.sunysb.edu)

http://www.cs.sunysb.edu/˜evans/stripe.html

Wrote the GPL’d tri-striper.

Oscar Everitt (bigoc@premier.net)
Created single engine piston engine sounds as part of an F4U package for FS98.
They are pretty cool and Oscar was happy to contribute them to our little project.

Bruce Finney (bfinney@gte.net)
Contributed patches for MSVC5 compatibility.

Jean-loup Gailly andMark Adler (zlib@gzip.org)
Authors of the zlib library. Used for on-the-fly compression and decompression
routines,

mailto:chauveau@math.univ-mlv.fr
http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html
mailto:j4strngs@rockfish.net
http://rockfish.net/fg/
mailto:dmc@halcyon.com
mailto:delise@mail.isis.de
http://www.isis.de/members/~odelise/progs/flightgear
http://www.animats.com/simpleppp/ftp/public_html/topics/developers.html
mailto:eberly@magic-software.com
http://www.magic-software.com
mailto:evans@cs.sunysb.edu
http://www.cs.sunysb.edu/~evans/stripe.html
mailto:bigoc@premier.net
mailto:bfinney@gte.net
mailto:zlib@gzip.org

http://www.cdrom.com/pub/infozip/zlib/.

Mohit Garg (theprotean1@hotmail.com)
Contributed to the manual.

Thomas Gellekum(tg@ihf.rwth-aachen.de)
Changes and updates for compiling on FreeBSD.

Neetha Girish (neethagirish@usa.net)
Contributed the changes for the xml configurable HUD.

Jeff Goeke-Smith(jgoeke@voyager.net)
Contributed our first autopilot (Heading Hold). Better autoconf check for external
timezone/daylight variables.

Michael I. Gold (gold@puck.asd.sgi.com)
Patiently answered questions on OpenGL.

Habibe (habibie@MailandNews.com)
Made RedHat package building changes for SimGear.

Mike Hill (mikehill@flightsim.com)
For allowing us to concert and use his wonderful planes, available form

http://www.flightsimnetwork.com/mikehill/home.htm,
for FlightGear.

Erik Hofman (erik.hofman@a1.nl)
Contributed SGI IRIX support and binaries.

Charlie Hotchkiss (clhotch@pacbell.net)
Worked on improving and enhancing the HUD code. Lots of code style tips and
code tweaks.

Bruce Jackson(NASA) (e.b.jackson@larc.nasa.gov)

http://dcb.larc.nasa.gov/www/DCBStaff/ebj/ebj.html

Developed the LaRCsim code under funding by NASA which we use to provide
the flight model. Bruce has patiently answered many, many questions.

Ove Kaaven(ovek@arcticnet.no)
Contributed the Debian binary.

Richard Kaszeta(bofh@me.umn.edu)
Contributed screen buffer to ppm screen shot routine. Also helped in the early
development of the ”altitude hold autopilot module” by teaching Curt Olson the
basics of Control Theory and helping him code and debug early versions. Curt’s

http://www.cdrom.com/pub/infozip/zlib/
mailto:theprotean_1@hotmail.com
mailto:tg@ihf.rwth-aachen.de
mailto:neethagirish@usa.net
mailto:jgoeke@voyager.net
mailto:gold@puck.asd.sgi.com
mailto:habibie@MailandNews.com
mailto:mikehill@flightsim.com
http://www.flightsimnetwork.com/mikehill/home.htm
mailto:erik.hofman@a1.nl
mailto:clhotch@pacbell.net
mailto:e.b.jackson@larc.nasa.gov
 http://dcb.larc.nasa.gov/www/DCBStaff/ebj/ebj.html
mailto:ovek@arcticnet.no
mailto:bofh@me.umn.edu

”Boss” Bob Hain (bob@me.umn.edu) also contributed to that. Further details
available at:

http://www.menet.umn.edu/ curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html.

Rich’s Homepage is at

http://www.menet.umn.edu/ kaszeta.

Tom Knienieder (tom@knienieder.com)
Ported the audio library first to OpenBSD and IRIX and after that to Win32.

Reto Koradi (kor@mol.biol.ethz.ch)

http://www.mol.biol.ethz.ch/˜kor

Helped with setting up fog effects.

Bob Kuehne(rpk@who.net)
Redid the Makefile system so it is simpler and more robust.

Kyler B Laird (laird@ecn.purdue.edu)
Contributed corrections to the manual.

David Luff (david.luff@nottingham.ac.uk)
Contributed heavily to the IO360 piston engine model.

Christian Mayer (flightgear@christianmayer.de)
Working on multi-lingual conversion tools for fgfs as a demonstration of technol-
ogy. Contributed code to read Microsoft Flight Simulator scenery textures. Chris-
tian is working on a completely new weather subsystem. Donated a hot air balloon
to the project.

David Megginson(david@megginson.com)
Contributed patches to allow mouse input to control view direction yoke. Con-
tributed financially towards hard drive space for use by the flight gear project.
Updates to README.running. Working on getting fgfs and ssg to work with-
out textures. Also added the new 2-D panel and the save/load support. Further, he
developed new panel code, playing better with OpenGL, with new features. Devel-
oped the property manager and contributed to joystick support.

Cameron Moore (cameron@unbeatenpath.net)
FAQ maintainer. Reigning list administrator. Provided man pages.

Eric Mitchell (mitchell@mars.ark.com)
Contributed some topnotch scenery textures being all original creations by him.

mailto:bob@me.umn.edu
http://www.menet.umn.edu/~curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html
http://www.menet.umn.edu/~kaszeta
mailto:tom@knienieder.com
mailto:kor@mol.biol.ethz.ch
http://www.mol.biol.ethz.ch/~kor
http://www.mol.biol.ethz.ch/~{}kor
http://www.mol.biol.ethz.ch/~kor
mailto:rpk@who.net
mailto:laird@ecn.purdue.edu
mailto:david.luff@nottingham.ac.uk
mailto:flightgear@christianmayer.de
mailto:david@megginson.com
mailto:cameron@unbeatenpath.net
mailto:mitchell@mars.ark.com

Alan Murta (amurta@cs.man.ac.uk)

http://www.cs.man.ac.uk/aig/staff/alan/software/

Created the Generic Polygon Clipping library.

Phil Nelson(phil@cs.wwu.edu)
Author of GNU dbm, a set of database routines that use extendible hashing and
work similar to the standard UNIX dbm routines.

Alexei Novikov (anovikov@heron.itep.ru)
Created European Scenery. Contributed a script to turn fgfs scenery into beautifully
rendered 2-D maps. Wrote a first draft of a Scenery Creation Howto.

Curt Olson (curt@flightgear.org)
Primary organization of the project.
First implementation and modifications based on LaRCsim.
Besides putting together all the pieces provided by others mainly concentrating on
the scenery subsystem as well as the graphics stuff. Homepage at

http://www.menet.umn.edu/ curt/

noindentBrian Paul
We made use of his TR library and of course of Mesa:

http://www.mesa3d.org/brianp/TR.html, http://www.mesa3d.org

Tony Peden(apeden@earthlink.net)
Contributions on flight model development, including a LaRCsim based Cessna
172. Contributed toJSBSimthe initial conditions code, a more complete standard
atmosphere model, and other bugfixes/additions. His Flight Dynamics page can be
found at:

http://www.nwlink.com/̃ apeden.

Robin Peel(robin@cpwd.com)
Maintains worldwide airport and runway database forFlightGear as well as X-
Plane.

Alex Perry (alex.perry@ieee.org)
Contributed code to more accurately model VSI, DG, Alticude. Suggestions for
improvements of the layout of the simulator on the mailing list and help on docu-
mentation.

Friedemann Reinhard (mpt218@faupt212.physik.uni-erlangen.de)
Development of an early textured instrument panel.

Petter Reinholdtsen(pere@games.no)
Incorporated the GNU automake/autoconf system (with libtool). This should stream-
line and standardize the build process for all UNIX-like platforms. It should have

mailto:amurta@cs.man.ac.uk
http://www.cs.man.ac.uk/aig/staff/alan/software/
mailto:phil@cs.wwu.edu
mailto:anovikov@heron.itep.ru
mailto:curt@flightgear.org
http://www.menet.umn.edu/~curt/
http://www.mesa3d.org/brianp/TR.html
http://www.mesa3d.org
mailto:apeden@earthlink.net
http://www.nwlink.com/~apeden
mailto:robin@cpwd.com
mailto:alex.perry@ieee.org
mailto:mpt218@faupt212.physik.uni-erlangen.de
mailto:pere@games.no

little effect on IDE type environments since they don’t use the UNIX make system.

William Riley (riley@technologist.com)
Contributed code to add ”brakes”. Also wrote a patch to support a first joystick
with more than 2 axis.

Andy Ross(andy@plausible.org)
Contributed a new configurable FDM called YASim (Yet Another Fligth Dynamics
Simulator, based on geometry information rather than aerodynamic coefficients.

Paul Schlyter (pausch@saaf.se)
Provided Durk Talsma with all the information he needed to write the astro code.
Mr. Schlyter is also willing to answer astro-related questions whenever one needs
to.

http://welcome.to/pausch

Chris Schoeneman(crs@millpond.engr.sgi.com)
Contributed ideas on audio support.

Phil Schubert (philip@zedley.com)
Contributed various textures and engine modelling.

http://www.zedley.com/Philip/index.htm.

Jonathan R Shewchuk(JonathanR Shewchuk@ux4.sp.cs.cmu.edu)
Author of the Triangle program. Triangle is used to calculate the Delauney trian-
gulation of our irregular terrain.

Gordan Sikic (gsikic@public.srce.hr)
Contributed a Cherokee flight model for LaRCsim. Currently is not working and
needs to be debugged. Use configure--with-flight-model=cherokee to
build the cherokee instead of the Cessna.

Michael Smith (msmith99@flash.net)
Contributed cockpit graphics, 3-D models, logos, and other images. Project Bo-
nanza

http://members.xoom.com/ConceptSim/index.html.

Durk Talsma (d.talsma@chello.nl)
Accurate Sun, Moon, and Planets. Sun changes color based on position in sky.
Moon has correct phase and blends well into the sky. Planets are correctly po-
sitioned and have proper magnitude. Help with time functions, GUI, and other
things. Contributed 2-D cloud layer. Website at

mailto:riley@technologist.com
mailto:andy@plausible.org
mailto:pausch@saaf.se
http://welcome.to/pausch
mailto:crs@millpond.engr.sgi.com
mailto:philip@zedley.com
http://www.zedley.com/Philip/index.htm
mailto:Jonathanprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Rprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Shewchuk@ux4.sp.cs.cmu.edu
mailto:gsikic@public.srce.hr
mailto:msmith99@flash.net
http://members.xoom.com/ConceptSim/index.html
mailto:d.talsma@chello.nl

http://people.a2000.nl/dtals.

UIUC - Department of Aeronautical and Astronautical Engineering
Contributed modifications to LaRCsim to allow loading of aircraft parameters from
a file. These modifications were made as part of an icing research project.

Those did the coding and made it all work:
Jeff Scott jscott@students.uiuc.edu
Bipin Sehgal bsehgal@uiuc.edu
Michael Selig m-selig@uiuc.edu

Moreover, those helped to support the effort:
Jay Thomas jthomas2@uiuc.edu
Eunice Lee ey-lee@students.uiuc.edu
Elizabeth Rendon mdfhoyos@md.impsat.net.co
Sudhi Uppuluri suppulur@students.uiuc.edu

U. S. Geological Survey

http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html

Provided geographic data used by this project.

Mark Vallevand (Mark.Vallevand@UNISYS.com)
Contributed some METAR parsing code and some win32 screen printing routines.

Gary R. Van Sickle (tiberius@braemarinc.com)
Contributed some initial GameGLUT support and other fixes. Has done some in-
teresting preliminary work on a binary file format. Check

http://www.woodsoup.org/projs/ORKiD/fgfs.htm.

Martin Spott (Martin.Spott@uni-duisburg.de)
Co-Author of the ”Getting Started”.

Norman Vine (nhv@yahoo.com)
Provided more numerous URL’s to the ”FlightGear Community”. Many perfor-
mance optimizations throughout the code. Many contributions and much advice
for the scenery generation section. Lots of Windows related contributions. Con-
tributed wgs84 distance and course routines. Contributed a great circle route au-
topilot mode based on wgs84 routines. Many other GUI, HUD and autopilot con-
tributions. Patch to allow mouse input to control view direction. Ultra hires tiled
screen dumps. Contributed the initial ’goto airport’ and ’reset’ functions and the
initial http image server code

http://people.a2000.nl/dtals
mailto:jscott@students.uiuc.edu
mailto:bsehgal@uiuc.edu
mailto:m-selig@uiuc.edu
mailto:jthomas2@uiuc.edu
mailto:ey-lee@students.uiuc.edu
mailto:mdfhoyos@md.impsat.net.co
mailto:suppulur@students.uiuc.edu
http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html
mailto:Mark.Vallevand@UNISYS.com
mailto:tiberius@braemarinc.com
http://www.woodsoup.org/projs/ORKiD/fgfs.htm
mailto:Martin.Spott@uni-duisburg.de
mailto:nhv@yahoo.com

Roland Voegtli (webmaster@sanw.unibe.ch)
Contributed great photorealistic textures. Founder of European Scenery Project for
X-Plane:

http://www.g-point.com/xpcity/esp/

Carmelo Volpe (carmelo.volpe@mednut.ki.se)
PortingFlightGear to the Metro Works development environment (PC/Mac).

Darrell Walisser (dwaliss1@purdue.edu)
Contributed a large number of changes to portingFlightGear to the Metro Works
development environment (PC/Mac). Finally produced the first Macintosh port.
Contributed to the Mac part of Getting Started, too.

Ed Williams (Ed Williams@compuserve.com).
Contributed magnetic variation code (impliments Nima WMM 2000). We’ve also
borrowed from Ed’s wonderful aviation formulary at various times as well. Website
at http://www.best.com/̃williams/index.html,

Jean-Claude Wippler (jcw@equi4.com)
Author of MetaKit - a portable, embeddible database with a portable data file for-
mat used inFlightGear. Please see the following URL for more info:

http://www.equi4.com/metakit

Woodsoup Project

http://www.woodsoup.org
While FlightGear no longer uses Woodsoup servies we appreciate the support

provied to our project during the time they hosted us. Once they provided comput-
ing resources and services so that theFlightGear project could have a real home.
Robert Allan Zeh (raz@cmg.FCNBD.COM)
Helped tremendously in figuring out the Cygnus Win32 compiler and how to link
with .dll’s. Without him the first run-able Win32 version ofFlightGear would have
been impossible.

C.3 What remains to be done

If you read (and, maybe, followed) this guide up to this point you may probably
agree:FlightGear, even in its present state, is not at all for the birds. It is already a
flight simulator which sports even several selectable flight models, several planes
with panels and even a HUD, terrain scenery, texturing, all the basic controls and
weather.

mailto:webmaster@sanw.unibe.ch
http://www.g-point.com/xpcity/esp/
mailto:carmelo.volpe@mednut.ki.se
mailto:dwaliss1@purdue.edu
file:Ed_Williams@compuserve.com
http://www.best.com/~williams/index.html
mailto:jcw@equi4.com
http://www.equi4.com/metakit
http://www.woodsoup.org
mailto:raz@cmg.FCNBD.COM

Despite,FlightGear needs – and gets – further development. Except internal
tweaks, there are several fields whereFlightGear needs basics improvement and
development. A first direction is adding airports, streets, and more of those things
bringing scenery to real life and belonging to realistic airports. Another task is
further implementation of the menu system, which should not be too hard with the
basics being working now. A lot of options at present set via command line or even
during compile time should finally make it into menu entries. Finally,FlightGear
lacks any ATC until now.

There are already people working in all of these directions. If you’re a pro-
grammer and think you can contribute, you are invited to do so.

Achnowledgements

Obviously this document could not have been written without all those contributors
mentioned above makingFlightGear a reality.

First, I was very glad to see Martin Spott entering the documentation effort.
Martin provided not only several updates and contributions (notably in the OpenGL
section) on the Linux side of the project but also several general ideas on the doc-
umentation in general

Besides, I would like to say special thanks to Curt Olson, whose numerous
scattered Readmes, Thanks, Webpages, and personal eMails were of special help
to me and were freely exploited in the making of this booklet.

Next, Bernhard Buckel wrote several sections of early versions of that Guide
and contributed at lot of ideas to it.

Jon S. Berndt supported me by critical proofreading of several versions of the
document, pointing out inconsistences and suggesting improvements.

Moreover, I gained a lot of help and support from Norman Vine. Maybe, with-
out Norman’s answers I would have never been able to tame different versions of
theCygwin– FlightGear couple.

We were glad, our Mac expert Darrell Walisser contributed the section on com-
piling under Mac OS X. In addition he submitted several Mac related hints and
fixes.

Further contributions and donations on special points came from John Check,
(general layout), Oliver Delise (several suggestions including notes on that chap-
ter), Mohit Garg (OpenGL), Kyler B. Laird (corrections), Alex Perry (OpenGL),
and Kai Troester (compile problems).

Besides those whose names got lost withing the last-minute-trouble we’d like to
express our gratitude to the following people for contributing valuable ’bug fixes’
to this version of Getting Started (in random order): Cameron Moore, Melchior
Franz, David Megginson, Jon Berndt, Alex Perry, Andy Ross, Erik Hofman.

Index

.fgfsrc, 36, 79
3DFX, 64, 69
3dfx, 70

A1 Free Sounds, 80
A4, 17
add-on scenery, 31
ADF, 56
Adler, Mark, 82
Aeronautical Information Manual, 59
AGP, 72
AGP Support, 70
aileron, 49, 55
aileron indicator, 57
air traffic facilities, 56
aircraft model, 39
aircraft model directory, 39
airport, 40, 89
airport code, 40, 59
airport ID, 53
airspeed indicator, 54
Alonzo, Raul, 80
altimeter, 55
altitude, 53
altitude hold, 50
America, Michele, 77, 81
anonymous cvs, 15
anti-aliaseded HUD lines, 38
antialiasing, 52
artificial horizon, 54
astronomy code, 76
ATC, 89
ATI, 69, 70
ATIS, 56
attitude indicator, 54
audio library, 84
audio support, 78
auto coordination, 37, 55
autopilot, 50, 51, 53, 56, 77, 83

autopilot controls, 50, 51
autothrottle, 50

bank, 54
base package, 7, 31

installation, 27, 28
Basler, Michael, 81
Berndt, Jon, 89
Berndt, Jon, S., 78, 80, 81, 89
binaries, 19, 29

Debian, 30
directory, 24
Macintosh, 30
pre-compiled, 9
SGI Irix, 31
Windows, 29

binaries, pre-compiled, 19
binary directory, 21
binary distribution, 7
bleeding edge snapshots, 28
Bleisch, Paul, 81
Boeing 747, 17
brakes, 51, 56, 86
branch, developmental, 15
branch, stable, 15
Brennan, Jim, 81
Bright, Bernie, 81
BSD UNIX, 13
Buckel, Bernhard, 81, 89
Buckle, Gene, 81

call sign, 53
callsign, 43
Carmichael, Ralph, 81
CD-ROM, 31
Cessna, 57, 86
Cessna 172, 16, 17, 50, 77, 78
Cessna 182, 16
Cessna 310, 16

90

Cessna C172, 17
Chauveau, Didier, 82
Check, John, 46, 57, 79, 82, 89
Cherokee flight model, 86
clock, 55
cloud layer, 41
clouds, 78, 86
CodeWarrior, 27
COM transceiver, 56
COMM1, 56
COMM2, 56
command line options, 36
communication radio, 56
compiler, 15
compiling, 19

IRIX, 27
Linux, 21
MacIntosh, 24
other systems, 27
Solaris, 27
Windows, 21

configure, 23
contributors, 80
control device, 37
Cornish, Dave, 79, 82
CVS snapshots, 15
cvs, anonymous, 15
Cygnus, 15, 88

development tools, 20
Cygwin, 65

setup, 20

DC-3, 17
Debian, 20, 30
default settings, 36
Delise, Oliver, 78, 80, 82, 89
Denker, John, 60
Detonator reference drivers, 68
development environment, 20
differential braking, 51
Direct3D, 14
directory structure, 28
disk space, 14, 20
display options, 50
distribution

binary, 16, 19
documentation, 13

installation, 32
DOS, 75

Doue, Jean-Francois, 82
DRI, 73

Eberly, Dave, 82
elevation indicator, 57
elevator trim, 49
engine, 47

starting, 47
engine controls, 51
environment variable, 35
environment variables, 34
Evans, Francine, 82
Everitt, Oscar, 82
exit, 52, 59

FAA, 59
FAA Training Book, 59
FAQ, 8, 9, 62
FDM, 81

external, 17
field of view, 41
Finney, Bruce, 82
flaps, 51, 54, 57
flight dynamics model, 16, 38
flight instrument, 54
flight model, 16, 39, 78
flight models, 16
flight planner, 78
flight schools, 59
Flight simulator

civilian, 12
free, 75
multi-platform, 12, 13
open, 12, 13
user-extensible, 12, 13
user-sported, 12
user-supported, 13

FlightGear, 80
directory structure, 28
versions, 15

FlightGear documentation, 18
FlightGear Flight School, 18
FlightGear Getting Started Guide, 53
FlightGear Programmer’s Guide, 18
FlightGear Scenery Design Guide, 18
FlightGear Website, 17, 80
fog, 41
fog effects, 84
frame rate, 14, 41, 77

Franz, Melchior, 89
FreeBSD, 83
FreeGLUT, 27
frozen state, 37
FS98, 82
fuel indicator, 55
full screen display, 37
full screen mode, 41, 50

Gailly, Jean-loup, 82
GameGLUT, 87
Garg, Mohit, 83, 89
gauge, 54
gear, 51
Geforce, 9
Gellekum, Thomas, 83
Girish, Neetha, 83
GLIDE, 64
GNU C++, 15
Gnu Public License, 13
Goeke-Smith, Jeff, 77, 83
Gold, Michael, I., 83
GPL, 13
graphics card, 14
graphics library, 67
graphics routines, 75
gyro compass, 55

Habibe, 83
Harrier, 17
haze, 41
head up display, 57, 77
heading, 53
heading hold, 50
height, 57
help, 53
Hill, Mike, 83
History, 75
Hofman, Eric, 27
Hofman, Erik, 31, 83, 89
hot air balloon, 84
Hotchkiss, Charlie, 77, 83
HUD, 38, 42, 53, 57, 58, 77, 81, 83

IFR, 57, 59
ignition switch, 47, 55
inclinometer, 55
initial heading, 40
install directory, 22

instrument flight rules, 57
instrument panel, 38, 50, 54, 77
Internet, 78
IRIX, 27

Jackson, Bruce, 75, 83
joystick, 37, 44, 47, 48, 78
joystick settings, 79
joysticks, 15
JSBSim, 39

Kaaven, Ove, 30, 83
Kaszeta, Richard, 83
key bindings

configuration, 52
keyboard, 47
keyboard controls, 47–49

miscellaneous, 51
keyboard.xml, 52
Knienieder, Tom, 84
Koradi, Reto, 84
Korpela, Eric, 75
Kuehne, Bob, 84

Laird, Kyler B., 84, 89
landing gear, 51
LaRCsim, 75, 76, 78, 83, 85, 86
latitude, 58
Launching Flighgear

Mac OS X, 36
Windows, 35

Launching Flightgear
Linux, 34

leaflet, 8
Learjet 24, 17
Lee, Eunice, 87
Linux, 9, 13–15, 19, 68, 69, 75
Linux distributions, 20
load flight, 52
longitude, 58
Luff, David, 79, 84

Mac OS 9, 30
Mac OS 9.x, 73
Mac OS X, 30
Mac OX 10.x, 74
Macintosh, 9, 27, 30
magnetic compass, 55
mailing lists, 62, 80

map, clickable, 78
marker, inner, 56
marker, middle, 56
marker, outer, 56
Mayer, Christian, 78, 80, 84
Megginson, David, 77, 79, 84, 89
menu, 77
menu entries, 52
menu system, 89
MetaKit, 88
Metro Works, 88
Microsoft, 11
Mitchell, Eric, 77, 84
mixture, 57
mixture lever, 48
Moore Cameron, 62
Moore, Cameron, 84, 89
mouse, 47, 58
mouse interface, 37
mouse modi, 58
mouse, actions, 58
MS DevStudio, 65
MSVC, 65, 81
multi-lingual conversion tools, 84
multiplayer code, 78
Murr, David, 75
Murta, Alan, 85

NAV, 56
navaids, 57
Navion, 76, 78
NDB, 56
Nelson, Phil, 85
network, 53
network options, 43
networking code, 78, 82
networking support, 23
nightly snapshots, 15
Novikov, Alexei, 85
NumLock, 48
NVIDIA, 9, 68–70

drivers, 67
Linux drivers, 68
Windows drivers, 68

offset, 42
Olson, Curt, 31, 75, 77–80, 85, 89
OpenGL, 8, 9, 14, 18, 63, 67–69, 73, 74, 76,

77, 79, 83

drivers, 14
libraries, 27
Linux, 69
MacIntosh, 73
runtime libraries, 72

OpenGL drivers, 67
OpenGL renderer string, 72
OpenGL Setup, 69
Operating Systems, 13
options

aircraft model directory, 39
debugging, 44
features, 38
flight model, 38
general, 36
HUD, 42
initial position, 40
IO, 43
joystick, 44
network, 43
orientation, 40
rendering, 41
route, 43
time, 42
waypoint, 43

options, configure, 23
OS/2, 75

panel, 52, 54, 84, 85
reconfiguration, 57

parking brake, 48, 51
Paul, Brian, 85
pause, 51
PCI, 72
pedal, 44
Peden, Tony, 78, 80, 85
Peel, Robin, 85
permissions, 64
Perry, Alex, 85, 89
pitch, 54
pitch indicator, 57
places to discover, 59
PLIB, 22, 77–79

header files, 22
preferences, 36
problem report, 62
problems, 62

general, 63
Linux, 64

Windows, 65
programmers, 80
property manager, 53, 79
proposal, 75

Quake, 67

radio stack, 56
README.xmlpanel, 57
Reinhard, Friedemann, 77, 85
Reinholdtsen, Petter, 85
Rendon, Elizabeth, 87
reset flight, 52
Riley, William, 86
Ross, Andy, 79, 86, 89
RPM indicator, 55
rudder, 48, 49, 55
rudder indicator, 57
rudder pedals, 15, 47

save flight, 52
scenery, 76, 77

add-on, 31
scenery directory

path, 36
scenery subsystem, 85
Schlyter, Paul, 86
Schoenemann, Chris, 86
Schubert, Phil, 86
Scott, Jeff, 87
screenshot, 52
See how it flies, 60
Sehgal, Bipin, 87
Selig, Michael, 87
SGI IRIX, 13
SGI Irix, 9
Shewchuk, Jonathan, 86
Sikic, Gordan, 86
SimGear, 23, 79, 80
Smith, Michael, 86
snapshots, 28
Solaris, 27
sound card, 15
sound effects, 15
source code, 13
speed, 57
Spott, Martin, 87, 89
starter, 48, 55
Starting Flightgear

Linux, 34
Mac OS X, 36
Windows, 35

starting the engine, 55
starting time, 42
startup latitude, 40
startup longitude, 40
startup pitch angle, 40
startup roll angle, 40
Stuffit Expander, 30
Sun-OS, 13, 75
SuSE, 20, 69, 73
system requirements, 14
system.fgfsrc, 36, 79

Talsma, Durk, 76, 78, 86
TerraGear, 80
terrain, 41
text books, 59
texture, 77
textures, 77, 84
Thomas, Jay, 87
throttle, 48, 49, 57
thunderstorms, 78
Tilt view, 50
time, 42
time offset, 51
time options, 42
TNT, 9
Torvalds, Linus, 14
triangle program, 86
triangles, 42
trim, 49
Troester, Kai, 64, 89
Turbo 310, 17
turn indicator, 55, 57
Twin Otter, 17

U. S. Geological Survey, 76, 87
UIUC, 87
UIUC flight model, 17, 39
UNIX, 14, 19, 75
Unix, 27

Vallevand, Mark, 87
van Sickle, Gary, R., 80, 87
velocity rages, 54
vertical speed indicator, 55
VFR, 57, 59

video card, 67
view, 52
view directions, 49
view frustrum culling, 77
view modes, 50
viewpoint, 52
views, 78
Vine, Norman, 77, 78, 80, 87, 89
visibility, 50
Visual C++, 27
visual flight rules, 57
Voegtli, Roland, 88
Volpe, Carmelo, 88
VOR, 56

Walisser, Darrell, 30, 88, 89
waypoint, 53
weapon systems, 12
weather, 84
weather subsystem, 23
Williams, Ed, 88
window size, 42
Windows, 9, 14, 15, 19, 29, 36, 68
Windows 95/98/ME, 13
Windows 95/NT, 75
Windows NT/2000/XP, 13
winds, 78
Wippler, Jean-Claude, 88
wireframe, 42
Wood, Charles, 60
Woodsoup, 88
workstation, 14, 75

X server, 71
X15, 16, 78
XFree86, 64, 70, 73

YASim, 17
yoke, 37, 44, 47, 48, 56
yokes, 15

Zeh, Allan, 88
zlib library, 82

	I Installation
	Want to have a free flight? Take FlightGear!
	Yet another Flight Simulator?
	System requirements
	Which version should I use?
	Flight models
	To whom this guide is addressed and how it is organized

	Building the plane: Compiling the program
	Getting a development environment under Windows
	Compiling FlightGear under Linux/Windows
	Compiling FlightGear under Mac OS 10.1
	Compiling on other systems
	Installing the base package
	For test pilots only: Building the CVS snapshots

	Preflight: Installing FlightGear
	Installing the binary distribution on a Windows system
	Installing the binary distribution on a Macintosh system
	Installing the binary distribution on a Debian Linux system
	Installing the binary distribution on a SGI IRIX system
	Installing add-on scenery
	Installing documentation

	II Flying with FlightGear
	Takeoff: How to start the program
	Launching the simulator under Unix/Linux
	Launching the simulator under Windows
	Launching the simulator under Mac OS X
	Command line parameters
	General Options
	Features
	Flight model
	Aircraft model directory (Only for the UIUC Flight Dynamics Model)
	Initial Position and Orientation
	Rendering Options
	HUD Options
	Time Options
	Network Options
	Route/Waypoint Options
	IO Options
	Debugging options
	Joystick properties

	In-flight: All about instruments, keystrokes and menus
	Starting the engine
	Keyboard controls
	Menu entries
	The Instrument Panel
	The Head Up Display
	Mouse controlled actions
	Some further reading for pilot students

	III Appendices
	Missed approach: If anything refuses to work
	FlightGear Problem Reports
	General problems
	Potential problems under Linux
	Potential problems under Windows

	Some words on OpenGL graphics drivers
	NVIDIA chip based cards under Linux
	NVIDIA chip based cards under Windows
	3DFX chip based cards under Windows
	An alternative approach for Windows users
	3DFX chip based cards under Linux
	ATI chip based cards under Linux
	Building your own OpenGL support under Linux
	OpenGL on MacIntosh

	Landing: Some further thoughts before leaving the plane
	A not so Short History of FlightGear
	Those, who did the work
	What remains to be done

