// -*-C++-*- // written by Thorsten Renk, Oct 2011, based on default.frag // Ambient term comes in gl_Color.rgb. varying vec4 diffuse_term; varying vec3 normal; varying vec3 relPos; varying vec4 rawPos; //varying vec3 hazeColor; //varying float fogCoord; uniform sampler2D texture; uniform sampler3D NoiseTex; uniform sampler2D snow_texture; //varying float ct; //varying float delta_z; //varying float alt; varying float earthShade; //varying float yprime; //varying float vertex_alt; varying float yprime_alt; varying float mie_angle; varying float steepness; uniform float visibility; uniform float avisibility; uniform float scattering; //uniform float ground_scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; //uniform float altitude; uniform float eye_alt; uniform float mysnowlevel; uniform float dust_cover_factor; uniform float fogstructure; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility float fog_func (in float targ) { float fade_mix; // for large altitude > 30 km, we switch to some component of quadratic distance fading to // create the illusion of improved visibility range targ = 1.25 * targ; // need to sync with the distance to which terrain is drawn if (alt < 30000.0) {return exp(-targ - targ * targ * targ * targ);} else if (alt < 50000.0) { fade_mix = (alt - 30000.0)/20000.0; return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0)); } else { return exp(- targ * targ - pow(targ,4.0)); } } void main() { // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec4 color = gl_Color; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 snow_texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; vec4 light_specular = gl_LightSource[0].specular; // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(n); NdotL = dot(n, lightDir); if (NdotL > 0.0) { color += diffuse_term * NdotL; NdotHV = max(dot(n, halfVector), 0.0); if (gl_FrontMaterial.shininess > 0.0) specular.rgb = (gl_FrontMaterial.specular.rgb * light_specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess)); } color.a = diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); texel = texture2D(texture, gl_TexCoord[0].st); snow_texel = texture2D(snow_texture, gl_TexCoord[0].st); // this is the snow and dust generating part, ger some noise vectors vec4 noisevec = texture3D(NoiseTex, (rawPos.xyz)*0.003); // small scale noise //vec4 nvL = texture3D(NoiseTex, (rawPos.xyz)*0.00066); vec4 nvL = texture3D(NoiseTex, (rawPos.xyz)*0.0001); // large scale noise vec4 nvR = texture3D(NoiseTex, (rawPos.xyz)*0.00003); // really large scale noise //float ns=0.06; // ns += nvL[0]*0.4; //ns += nvL[1]*0.6; //ns += nvL[2]*2.0; //ns += nvL[3]*4.0; //ns += noisevec[0]*0.1; //ns += noisevec[1]*0.4; //ns += noisevec[2]*0.8; //ns += noisevec[3]*2.1; // gradient effect for snow // mix dust vec4 dust_color = vec4 (0.76, 0.71, 0.56, 1.0); //dust_color.rgb = dust_color.rgb * nvL[1]; texel = mix(texel, dust_color, clamp(0.5 * dust_cover_factor + 3.0 * dust_cover_factor * nvL[1],0.0, 1.0) ); float snow_alpha = smoothstep(0.7, 0.8, abs(steepness)); //vec4 snow_texel = clamp(ns+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0); //snow_texel.a = snow_alpha * snow_texel.a; // mix snow texel = mix(texel, snow_texel, smoothstep(mysnowlevel, mysnowlevel+200.0, snow_alpha * (relPos.z + eye_alt)+ (noisevec[1] * abs(noisevec[1])+ nvL[1])*1500.0)); // gradient //fragColor = mix(vec4(ns-0.30, ns-0.29, ns-0.37, 1.0), fragColor, smoothstep(0.0, 0.40, steepness));// +nvL[2]*1.3)); fragColor = color * texel + specular; // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; float dist = length(relPos); if (dist > 40.0) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // angle with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; //float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt); if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility + 0.8 * visibility * fogstructure * (( 0.4 * nvL[1] + 0.6 * nvR[1]) -0.1) )); //transmission_arg = transmission_arg + (distance_in_layer/visibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility + 0.8 * avisibility * fogstructure * (( 0.4 * nvL[1] + 0.6 * nvR[1]) -0.1) )); //transmission_arg = transmission_arg + (distance_in_layer/avisibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -scattering); } transmission = fog_func(transmission_arg); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor; hazeColor.b = light_func(lightArg, 1.330e-05, 0.264, 2.527, 1.08e-05, 1.0); hazeColor.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0); hazeColor.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0); // now dim the light for haze earthShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1; // Mie-like factor if (lightArg < 5.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* vec3 (0.45, 0.6, 0.8), 1.0 -smoothstep(0.25, fade_out,earthShade) )); // change haze color to blue hue for strong fogging //intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 2.0 * vec3 (0.55, 0.6, 0.8), (1.0-smoothstep(0.3,0.8,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); // randomness //hazeColor.rgb = hazeColor.rgb + 0.2 * hazeColor.rgb * nvL[1]; // determine the right mix of transmission and haze //fragColor.xyz = transmission * fragColor.xyz + (1.0-transmission) * eqColorFactor * hazeColor * earthShade; //fragColor.rgb = mix(fragColor.rgb, vec3 (1.0, 1.0, 1.0), overcast ); fragColor.xyz = mix(eqColorFactor * hazeColor * earthShade, fragColor.xyz,transmission); gl_FragColor = fragColor; } else // if dist < 40.0 no fogging at all { gl_FragColor = fragColor; } //gl_FragColor.rgb = 5.0 * nvL[1] * vec3 (1.0, 1.0, 1.0); }