// -*- mode: C; -*- // RANDOM BUILDINGS for the UBERSHADER vertex shader // Licence: GPL v2 // © Emilian Huminiuc and Vivian Meazza 2011 #version 120 #extension GL_EXT_draw_instanced : enable varying vec4 diffuseColor; varying vec3 VBinormal; varying vec3 VNormal; varying vec3 VTangent; varying vec3 eyeVec; varying vec3 normal; uniform int refl_dynamic; uniform int nmap_enabled; uniform int shader_qual; uniform int rembrandt_enabled; attribute vec3 instancePosition; // (x,y,z) attribute vec3 instanceScaleRotate; // (width, depth, height) attribute vec3 rotPitchWtex0x; // (rotation, pitch height, texture x offset) attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain) attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, texture y gain) void main(void) { // Determine the rotation for the building. float sr = sin(6.28 * rotPitchWtex0x.x); float cr = cos(6.28 * rotPitchWtex0x.x); // Adjust pitch of roof to the correct height. // The top roof vertices are the only ones that have fractional z values (1.5), // so we can use this to identify them and scale up any pitched roof vertex to // the correct pitch (rotPitchWtex0x.y * 2.0 because of the fractional z value), // then scale down by the building height (instanceScaleRotate.z) because // immediately afterwards we will scale UP the vertex to the correct scale. vec3 position = gl_Vertex.xyz; position.z = position.z + fract(position.z) * 2.0 * rotPitchWtex0x.y / instanceScaleRotate.z - fract(position.z); position = position * instanceScaleRotate.xyz; // Rotation of the building and movement into position position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr))); position = position + instancePosition.xyz; gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0); vec4 ecPosition = gl_ModelViewMatrix * vec4(position, 1.0); eyeVec = ecPosition.xyz; // Rotate the normal. normal = gl_Normal; // The roof pieces have a normal of (+/-0.7, 0.0, 0.7) // If the roof is flat, then we need to change it to (0,0,1). // First term evaluates for normals without a +z component (all except roof) // Second term evaluates for roof normals with a pitch // Third term evaluates for flat roofs normal = step(0.5, 1.0 - normal.z) * normal + step(0.5, normal.z) * clamp(rotPitchWtex0x.y, 0.0, 1.0) * normal + step(0.5, normal.z) * (1.0 - clamp(rotPitchWtex0x.y, 0.0, 1.0)) * vec3(0,0,1); // Rotate the normal as per the building. normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr))); vec3 n = normalize(normal); vec3 c1 = cross(n, vec3(0.0,0.0,1.0)); vec3 c2 = cross(n, vec3(0.0,1.0,0.0)); VNormal = normalize(gl_NormalMatrix * normal); VTangent = c1; if(length(c2)>length(c1)){ VTangent = c2; } VBinormal = cross(n, VTangent); VTangent = normalize(gl_NormalMatrix * -VTangent); VBinormal = normalize(gl_NormalMatrix * VBinormal); // Force no alpha on random buildings diffuseColor = vec4(gl_FrontMaterial.diffuse.rgb,1.0); if(rembrandt_enabled < 1){ gl_FrontColor = gl_FrontMaterial.emission + vec4(1.0) * (gl_LightModel.ambient + gl_LightSource[0].ambient); } else { gl_FrontColor = vec4(1.0); } gl_ClipVertex = ecPosition; // Texture coordinates are stored as: // - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y) // - a shared gain value (tex1x, tex1y) // // The vertex color value selects between them, with glColor.x=1 indicating walls // and glColor.y=1 indicating roofs. // Finally, the roof texture is on the left of the texture sheet vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*rotPitchWtex0x.z + gl_Color.y*rtex0xRtex0y.x), gl_Color.x*wtex0yTex1xTex1y.x + gl_Color.y*rtex0xRtex0y.y); gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y; gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z; }