#version 330 core uniform mat4 fg_ProjectionMatrixInverse; uniform vec2 fg_NearFar; // https://aras-p.info/texts/CompactNormalStorage.html // Method #4: Spheremap Transform // Lambert Azimuthal Equal-Area projection vec2 encodeNormal(vec3 n) { float p = sqrt(n.z * 8.0 + 8.0); return vec2(n.xy / p + 0.5); } vec3 decodeNormal(vec2 enc) { vec2 fenc = enc * 4.0 - 2.0; float f = dot(fenc, fenc); float g = sqrt(1.0 - f * 0.25); vec3 n; n.xy = fenc * g; n.z = 1.0 - f * 0.5; return n; } // Given a 2D coordinate in the range [0,1] and a depth value from a depth // buffer, also in the [0,1] range, return the view space position. vec3 positionFromDepth(vec2 pos, float depth) { // We are using a reversed depth buffer. 1.0 corresponds to the near plane // and 0.0 to the far plane. We convert this back to clip space by doing // 1.0 - depth to undo the depth reversal // 2.0 * depth - 1.0 to transform it to clip space [-1,1] vec4 clipSpacePos = vec4(pos * 2.0 - 1.0, 1.0 - depth * 2.0, 1.0); vec4 viewSpacePos = fg_ProjectionMatrixInverse * clipSpacePos; viewSpacePos.xyz /= viewSpacePos.w; return viewSpacePos.xyz; } // http://www.geeks3d.com/20091216/geexlab-how-to-visualize-the-depth-buffer-in-glsl/ float linearizeDepth(float depth) { float z = 1.0 - depth; // Undo the depth reversal return 2.0 * fg_NearFar.x / (fg_NearFar.y + fg_NearFar.x - z * (fg_NearFar.y - fg_NearFar.x)); } vec3 decodeSRGB(vec3 screenRGB) { vec3 a = screenRGB / 12.92; vec3 b = pow((screenRGB + 0.055) / 1.055, vec3(2.4)); vec3 c = step(vec3(0.04045), screenRGB); return mix(a, b, c); }