// -*-C++-*- #version 120 // written by Thorsten Renk, Oct 2011, based on default.frag // Ambient term comes in gl_Color.rgb. varying vec4 diffuse_term; varying vec3 normal; varying vec3 relPos; varying vec2 rawPos; varying vec3 worldPos; uniform float fg_Fcoef; uniform sampler2D texture; uniform sampler2D detail_texture; uniform sampler2D mix_texture; //varying float yprime_alt; //varying float mie_angle; varying float steepness; varying float flogz; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float snowlevel; uniform float dust_cover_factor; uniform float lichen_cover_factor; uniform float wetness; uniform float fogstructure; uniform float snow_thickness_factor; uniform float cloud_self_shading; uniform float season; uniform float transition_model; uniform float hires_overlay_bias; uniform int quality_level; uniform int tquality_level; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float eShade; float yprime_alt; float mie_angle; float Noise2D(in vec2 coord, in float wavelength); float Noise3D(in vec3 coord, in float wavelength); float fog_func (in float targ, in float alt); vec3 get_hazeColor(in float light_arg); vec3 filter_combined (in vec3 color) ; float getShadowing(); void main() { yprime_alt = diffuse_term.a; //diffuse_term.a = 1.0; mie_angle = gl_Color.a; float effective_scattering = min(scattering, cloud_self_shading); // distance to fragment float dist = length(relPos); // angle of view vector with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec4 color = gl_Color; color.a = 1.0; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; //vec3 halfVector = normalize(normalize(lightDir) + normalize(ecViewdir)); vec4 texel; vec4 snow_texel; vec4 detail_texel; vec4 mix_texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; // get noise at different wavelengths // used: 5m, 5m gradient, 10m, 10m gradient: heightmap of the closeup terrain, 10m also snow // 50m: detail texel // 250m: detail texel // 500m: distortion and overlay // 1500m: overlay, detail, dust, fog // 2000m: overlay, detail, snow, fog float noise_10m; float noise_5m; noise_10m = Noise2D(rawPos.xy, 10.0); noise_5m = Noise2D(rawPos.xy ,5.0); float noisegrad_10m; float noisegrad_5m; float noise_50m = Noise2D(rawPos.xy, 50.0);; float noise_250m = Noise3D(worldPos.xyz,250.0); float noise_500m = Noise3D(worldPos.xyz, 500.0); float noise_1500m = Noise3D(worldPos.xyz, 1500.0); float noise_2000m = Noise3D(worldPos.xyz, 2000.0); // // get the texels texel = texture2D(texture, gl_TexCoord[0].st); float local_autumn_factor = texel.a; float distortion_factor = 1.0; vec2 stprime; int flag = 1; int mix_flag = 1; float noise_term; float snow_alpha; //float view_angle = abs(dot(normal, normalize(ecViewdir))); if ((quality_level > 3)&&(relPos.z + eye_alt +500.0 > snowlevel)) { float sfactor; snow_texel = vec4 (0.95, 0.95, 0.95, 1.0) * (0.9 + 0.1* noise_500m + 0.1* (1.0 - noise_10m) ); snow_texel.r = snow_texel.r * (0.9 + 0.05 * (noise_10m + noise_5m)); snow_texel.g = snow_texel.g * (0.9 + 0.05 * (noise_10m + noise_5m)); snow_texel.a = 1.0; noise_term = 0.1 * (noise_500m-0.5); sfactor = sqrt(2.0 * (1.0-steepness)/0.03) + abs(ct)/0.15; noise_term = noise_term + 0.2 * (noise_50m -0.5) * (1.0 - smoothstep(18000.0*sfactor, 40000.0*sfactor, dist) ) ; noise_term = noise_term + 0.3 * (noise_10m -0.5) * (1.0 - smoothstep(4000.0 * sfactor, 8000.0 * sfactor, dist) ) ; if (dist < 3000.0*sfactor){ noise_term = noise_term + 0.3 * (noise_5m -0.5) * (1.0 - smoothstep(1000.0 * sfactor, 3000.0 *sfactor, dist) );} snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) ); } if (tquality_level > 2) { mix_texel = texture2D(mix_texture, gl_TexCoord[0].st * 1.3); if (mix_texel.a <0.1) {mix_flag = 0;} } if (tquality_level > 3) { stprime = vec2 (0.86*gl_TexCoord[0].s + 0.5*gl_TexCoord[0].t, 0.5*gl_TexCoord[0].s - 0.86*gl_TexCoord[0].t); //distortion_factor = 0.9375 + (1.0 * nvL[2]); distortion_factor = 0.97 + 0.06 * noise_500m; stprime = stprime * distortion_factor * 15.0; if (quality_level > 4) { stprime = stprime + normalize(relPos).xy * 0.02 * (noise_10m + 0.5 * noise_5m - 0.75); } detail_texel = texture2D(detail_texture, stprime); if (detail_texel.a <0.1) {flag = 0;} } // texture preparation according to detail level // mix in hires texture patches float dist_fact; float nSum; float mix_factor; if (tquality_level > 2) { // first the second texture overlay // transition model 0: random patch overlay without any gradient information // transition model 1: only gradient-driven transitions, no randomness if (mix_flag == 1) { nSum = 0.18 * (2.0 * noise_2000m + 2.0 * noise_1500m + noise_500m); nSum = mix(nSum, 0.5, max(0.0, 2.0 * (transition_model - 0.5))); nSum = nSum + 0.4 * (1.0 -smoothstep(0.9,0.95, abs(steepness)+ 0.05 * (noise_50m - 0.5))) * min(1.0, 2.0 * transition_model); mix_factor = smoothstep(0.5, 0.54, nSum); texel = mix(texel, mix_texel, mix_factor); local_autumn_factor = texel.a; } // then the detail texture overlay } if (tquality_level > 3) { if (dist < 40000.0) { if (flag == 1) { //noise_50m = Noise2D(rawPos.xy, 50.0); //noise_250m = Noise2D(rawPos.xy, 250.0); dist_fact = 0.1 * smoothstep(15000.0,40000.0, dist) - 0.03 * (1.0 - smoothstep(500.0,5000.0, dist)); nSum = ((1.0 -noise_2000m) + noise_1500m + 2.0 * noise_250m +noise_50m)/5.0; nSum = nSum - 0.08 * (1.0 -smoothstep(0.9,0.95, abs(steepness))); mix_factor = smoothstep(0.47, 0.54, nSum +hires_overlay_bias - dist_fact); if (mix_factor > 0.8) {mix_factor = 0.8;} texel = mix(texel, detail_texel,mix_factor); local_autumn_factor = texel.a; } } } // autumn colors float autumn_factor = season * 2.0 * (1.0 - local_autumn_factor) ; texel.r = min(1.0, (1.0 + 2.5 * autumn_factor) * texel.r); texel.g = texel.g; texel.b = max(0.0, (1.0 - 4.0 * autumn_factor) * texel.b); if (local_autumn_factor < 1.0) { intensity = length(texel.rgb) * (1.0 - 0.5 * smoothstep(1.1,2.0,season)); texel.rgb = intensity * normalize(mix(texel.rgb, vec3(0.23,0.17,0.08), smoothstep(1.1,2.0, season))); } const vec4 dust_color = vec4 (0.76, 0.71, 0.56, 1.0); const vec4 lichen_color = vec4 (0.17, 0.20, 0.06, 1.0);; //float snow_alpha; if (quality_level > 3) { // mix vegetation texel = mix(texel, lichen_color, 0.4 * lichen_cover_factor + 0.8 * lichen_cover_factor * 0.5 * (noise_10m + (1.0 - noise_5m)) ); // mix dust texel = mix(texel, dust_color, clamp(0.5 * dust_cover_factor + 3.0 * dust_cover_factor * (((noise_1500m - 0.5) * 0.125)+0.125 ),0.0, 1.0) ); // mix snow if (relPos.z + eye_alt +500.0 > snowlevel) { snow_alpha = smoothstep(0.75, 0.85, abs(steepness)); //texel = mix(texel, snow_texel, texel_snow_fraction); texel = mix(texel, snow_texel, snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, snow_alpha * (relPos.z + eye_alt)+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0)); } } // get distribution of water when terrain is wet float water_threshold1; float water_threshold2; float water_factor =0.0; if ((dist < 5000.0)&& (quality_level > 3) && (wetness>0.0)) { water_threshold1 = 1.0-0.5* wetness; water_threshold2 = 1.0 - 0.3 * wetness; water_factor = smoothstep(water_threshold1, water_threshold2 , (0.3 * (2.0 * (1.0-noise_10m) + (1.0 -noise_5m)) * (1.0 - smoothstep(2000.0, 5000.0, dist))) - 5.0 * (1.0 -steepness)); } // darken wet terrain texel.rgb = texel.rgb * (1.0 - 0.6 * wetness); // light computations vec4 light_specular = gl_LightSource[0].specular; // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. //n = (2.0 * gl_Color.a - 1.0) * normal; n = normal;//vec3 (nvec.x, nvec.y, sqrt(1.0 -pow(nvec.x,2.0) - pow(nvec.y,2.0) )); n = normalize(n); NdotL = dot(n, lightDir); if ((tquality_level > 3) && (mix_flag ==1)&& (dist < 2000.0) && (quality_level > 4)) { noisegrad_10m = (noise_10m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),10.0))/0.05; noisegrad_5m = (noise_5m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),5.0))/0.05; NdotL = NdotL + 1.0 * (noisegrad_10m + 0.5* noisegrad_5m) * mix_factor/0.8 * (1.0 - smoothstep(1000.0, 2000.0, dist)); } if (NdotL > 0.0) { float shadowmap = getShadowing(); color += diffuse_term * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (gl_FrontMaterial.shininess > 0.0) specular.rgb = ((gl_FrontMaterial.specular.rgb * 0.1 + (water_factor * vec3 (1.0, 1.0, 1.0))) * light_specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess + (20.0 * water_factor)) * shadowmap); } color.a = 1.0;//diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); fragColor = color * texel + specular; // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; if (dist > 0.04 * min(visibility,avisibility)) //if ((gl_FragCoord.y > ylimit) || (gl_FragCoord.x < zlimit1) || (gl_FragCoord.x > zlimit2)) //if (dist > 40.0) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (visibility < avisibility) { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility + 1.0 * visibility * fogstructure * 0.06 * (noise_1500m + noise_2000m -1.0) )); } else { transmission_arg = transmission_arg + (distance_in_layer/visibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 - effective_scattering); } else { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility + 1.0 * avisibility * fogstructure * 0.06 * (noise_1500m + noise_2000m - 1.0) )); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 - effective_scattering); } transmission = fog_func(transmission_arg, alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // now dim the light for haze eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) { intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } intensity = length(hazeColor); if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly { // high altitude desaturation of the haze color hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(n,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); } fragColor.rgb = mix(clamp(hazeColor,0.0,1.0) , clamp(fragColor.rgb,0.0,1.0),transmission); } fragColor.rgb = filter_combined(fragColor.rgb); gl_FragColor = fragColor; gl_FragDepth = log2(flogz) * fg_Fcoef * 0.5; }