// This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // © Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // © Emilian Huminiuc and Vivian Meazza // Optimisation - 2012-5-05 // © Emilian Huminiuc and Vivian Meazza // Ported to the Atmospheric Light Scattering Framework // by Thorsten Renk, Aug. 2013 #version 120 #define fps2kts 0.5925 uniform sampler2D water_normalmap; uniform sampler2D water_reflection; uniform sampler2D water_dudvmap; uniform sampler2D water_reflection_grey; uniform sampler2D sea_foam; uniform sampler2D alpha_tex; uniform sampler2D bowwave_nmap; uniform float saturation, Overcast, WindE, WindN, spd, hdg; uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4; uniform int Status; uniform float hazeLayerAltitude; uniform float terminator; uniform float terrain_alt; uniform float avisibility; uniform float visibility; uniform float overcast; uniform float scattering; uniform float ground_scattering; uniform float cloud_self_shading; uniform float eye_alt; uniform float fogstructure; uniform float ice_cover; uniform float sea_r; uniform float sea_g; uniform float sea_b; uniform int quality_level; varying vec4 waterTex1; //moving texcoords varying vec4 waterTex2; //moving texcoords varying vec3 viewerdir; varying vec3 lightdir; varying vec3 normal; varying vec3 relPos; varying float earthShade; varying float yprime_alt; varying float mie_angle; varying float steepness; vec3 specular_light; float fog_func (in float targ, in float alt); vec3 get_hazeColor(in float light_arg); vec3 filter_combined (in vec3 color) ; const float terminator_width = 200000.0; const float EarthRadius = 5800000.0; /////// functions ///////// float normalize_range(float _val) { if (_val > 180.0) return _val - 360.0; else return _val; } void relWind(out float rel_wind_speed_kts, out float rel_wind_from_rad) { //calculate the carrier speed north and east in kts float speed_north_kts = cos(radians(hdg)) * spd ; float speed_east_kts = sin(radians(hdg)) * spd ; //calculate the relative wind speed north and east in kts float rel_wind_speed_from_east_kts = WindE*fps2kts + speed_east_kts; float rel_wind_speed_from_north_kts = WindN*fps2kts + speed_north_kts; //combine relative speeds north and east to get relative windspeed in kts rel_wind_speed_kts = sqrt(rel_wind_speed_from_east_kts*rel_wind_speed_from_east_kts + rel_wind_speed_from_north_kts*rel_wind_speed_from_north_kts); //calculate the relative wind direction float rel_wind_from_deg = degrees(atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts)); // rel_wind_from_rad = atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts); float rel_wind = rel_wind_from_deg - hdg; rel_wind = normalize_range(rel_wind); rel_wind_from_rad = radians(rel_wind); } void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility ////////////////////// void main(void) { const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005); const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02); const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25); mat4 RotationMatrix; float relWindspd=0; float relWinddir=0; float dist = length(relPos); vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); float effective_scattering = min(scattering, cloud_self_shading); // compute relative wind speed and direction relWind (relWindspd, relWinddir); rotationmatrix(relWinddir, RotationMatrix); // compute direction to viewer vec3 E = normalize(viewerdir); // compute direction to light source vec3 L = normalize(lightdir); // half vector vec3 H = normalize(L + E); const float water_shininess = 240.0; // approximate cloud cover float cover = 0.0; //bool Status = true; float windEffect = relWindspd; //wind speed in kt // float windEffect = sqrt(pow(abs(WindE),2)+pow(abs(WindN),2)) * 0.6; //wind speed in kt float windScale = 15.0/(5.0 + windEffect); //wave scale float waveRoughness = 0.05 + smoothstep(0.0, 50.0, windEffect); //wave roughness filter if (Status == 1){ cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4); } else { // hack to allow for Overcast not to be set by Local Weather if (Overcast == 0){ cover = 5; } else { cover = Overcast * 5; } } //vec4 viewt = normalize(waterTex4); vec4 viewt = vec4(-E, 0.0) * 0.6; vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale * 2.0) * 2.0 - 1.0; vec4 dist1 = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)* windScale * 2.0) * 2.0 - 1.0; vec4 fdist = normalize(dist1); fdist = -fdist; fdist *= sca; //normalmap rotationmatrix(-relWinddir, RotationMatrix); vec4 nmap0 = texture2D(water_normalmap, vec2((waterTex1 + disdis*sca2) * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0; vec4 nmap2 = texture2D(water_normalmap, vec2(waterTex2 * tscale * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0; vec4 nmap3 = texture2D(bowwave_nmap, gl_TexCoord[0].st) * 2.0 - 1.0; vec4 vNorm = normalize(mix(nmap3, nmap0 + nmap2, 0.3 )* waveRoughness); vNorm = -vNorm; //load reflection vec4 tmp = vec4(lightdir, 0.0); vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ; vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ; vec4 refl ; // cover = 0; /*if(cover >= 1.5){ refl= normalize(refTex); } else { refl = normalize(refTexGrey); refl.r *= (0.75 + 0.15 * cover); refl.g *= (0.80 + 0.15 * cover); refl.b *= (0.875 + 0.125 * cover); refl.a *= 1.0; } */ refl.r = sea_r; refl.g = sea_g; refl.b = sea_b; refl.a = 1.0; float intensity; // de-saturate for reduced light refl.rgb = mix(refl.rgb, vec3 (0.248, 0.248, 0.248), 1.0 - smoothstep(0.1, 0.8, ground_scattering)); // de-saturate light for overcast haze intensity = length(refl.rgb); refl.rgb = mix(refl.rgb, intensity * vec3 (1.0, 1.0, 1.0), 0.5 * smoothstep(0.1, 0.9, overcast)); vec3 N0 = vec3(texture2D(water_normalmap, vec2((waterTex1 + disdis*sca2)* RotationMatrix) * windScale * 2.0) * 2.0 - 1.0); vec3 N1 = vec3(texture2D(water_normalmap, vec2(waterTex2 * tscale * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0); vec3 N2 = vec3(texture2D(bowwave_nmap, gl_TexCoord[0].st)*2.0-1.0); //vec3 Nf = normalize((normal+N0+N1)*waveRoughness); vec3 N = normalize(mix(normal+N2, normal+N0+N1, 0.3)* waveRoughness); N = -N; // specular specular_light = gl_Color.rgb; vec3 specular_color = vec3(specular_light) * pow(max(0.0, dot(N, H)), water_shininess) * 6.0; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; vec4 alpha0 = texture2D(alpha_tex, gl_TexCoord[0].st); //calculate final colour vec4 ambient_light; ambient_light.rgb = max(specular_light.rgb, vec3(0.1, 0.1, 0.1)); ambient_light.a = 1.0; vec4 finalColor; finalColor = refl + specular * smoothstep(0.3, 0.6, ground_scattering); //add foam float foamSlope = 0.05 + 0.01 * windScale; //float waveSlope = mix(N0.g, N1.g, 0.25); vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 50.0); float waveSlope = N.g; if (windEffect >= 12.0) if (waveSlope >= foamSlope){ finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(foamSlope, 0.5, N.g)); } //generate final colour finalColor *= ambient_light;//+ alpha0 * 0.35; float delta_z = hazeLayerAltitude - eye_alt; if (dist > 40.0) { float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // angle with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility,avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (visibility < avisibility) { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility )); } else { transmission_arg = transmission_arg + (distance_in_layer/visibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility )); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = fog_func(transmission_arg, eye_alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // now dim the light for haze float eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly { hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, eye_alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); } // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor.rgb *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); finalColor.rgb = mix(hazeColor, finalColor.rgb,transmission); } finalColor.rgb = filter_combined(finalColor.rgb); gl_FragColor = vec4(finalColor.rgb, alpha0.a * 1.35); }