#version 330 core layout(location = 0) out vec4 fragColor; in VS_OUT { vec4 color; vec3 view_vector; } fs_in; uniform sampler2D transmittance_tex; uniform float max_radiance; uniform float fg_CameraDistanceToEarthCenter; uniform float fg_EarthRadius; uniform vec3 fg_CameraViewUp; const float ATMOSPHERE_RADIUS = 6471e3; // exposure.glsl vec3 apply_exposure(vec3 color); void main() { vec3 color = fs_in.color.rgb * fs_in.color.a * max_radiance; vec3 V = normalize(fs_in.view_vector); // Apply aerial perspective float normalized_altitude = (fg_CameraDistanceToEarthCenter - fg_EarthRadius) / (ATMOSPHERE_RADIUS - fg_EarthRadius); float cos_theta = dot(-V, fg_CameraViewUp); vec2 uv = vec2(cos_theta * 0.5 + 0.5, clamp(normalized_altitude, 0.0, 1.0)); vec4 transmittance = texture(transmittance_tex, uv); // The proper thing would be to have spectral data for the stars' radiance. // This could be approximated by taking the star's temperature and using // Plank's law to obtain the spectral radiance for our 4 wavelengths. // That's too complicated for now, so instead we just average the four // spectral samples from the atmospheric transmittance. color *= dot(transmittance, vec4(0.25)); // Pre-expose color = apply_exposure(color); // Final color = transmittance * star radiance + sky inscattering // In this frag shader we output the multiplication part, and the sky // in-scattering is added by doing additive blending on top of the skydome. fragColor = vec4(color, 1.0); }