/** * Adaptation of SMAA (Enhanced Subpixel Morphological Antialiasing) * for FlightGear. * See http://www.iryoku.com/smaa/ for details. * Licensed under the MIT license, see below. */ /** * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) * * Permission is hereby granted, free of charge, to any person obtaining a copy * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. As clarification, there * is no requirement that the copyright notice and permission be included in * binary distributions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #version 330 core #define SMAA_THRESHOLD 0.1 #define SMAA_MAX_SEARCH_STEPS_DIAG 8 #define SMAA_CORNER_ROUNDING 25 #define SMAA_AREATEX_MAX_DISTANCE 16 #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 #define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0)) #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) #define SMAA_SEARCHTEX_SIZE vec2(66.0, 33.0) #define SMAA_SEARCHTEX_PACKED_SIZE vec2(64.0, 16.0) #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) #define SMAA_AREATEX_SELECT(sample) sample.rg #define SMAA_SEARCHTEX_SELECT(sample) sample.r out vec4 fragColor; in vec2 texCoord; in vec2 pixCoord; in vec4 vOffset[3]; uniform sampler2D edges_tex; uniform sampler2D area_tex; uniform sampler2D search_tex; uniform vec4 fg_Viewport; #define SMAA_RT_METRICS vec4(1.0 / fg_Viewport.z, 1.0 / fg_Viewport.w, fg_Viewport.z, fg_Viewport.w) #define mad(a, b, c) (a * b + c) #define saturate(a) clamp(a, 0.0, 1.0) #define round(v) floor(v + 0.5) #define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset) /** * Conditional move: */ void SMAAMovc(bvec2 cond, inout vec2 variable, vec2 value) { if (cond.x) variable.x = value.x; if (cond.y) variable.y = value.y; } void SMAAMovc(bvec4 cond, inout vec4 variable, vec4 value) { SMAAMovc(cond.xy, variable.xy, value.xy); SMAAMovc(cond.zw, variable.zw, value.zw); } //----------------------------------------------------------------------------- // Diagonal Search Functions /** * Allows to decode two binary values from a bilinear-filtered access. */ vec2 SMAADecodeDiagBilinearAccess(vec2 e) { // Bilinear access for fetching 'e' have a 0.25 offset, and we are // interested in the R and G edges: // // +---G---+-------+ // | x o R x | // +-------+-------+ // // Then, if one of these edge is enabled: // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 // // This function will unpack the values (mad + mul + round): // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); return round(e); } vec4 SMAADecodeDiagBilinearAccess(vec4 e) { e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); return round(e); } /** * These functions allows to perform diagonal pattern searches. */ vec2 SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, vec3(dir, 1.0), coord.xyz); e = textureLod(edgesTex, coord.xy, 0.0).rg; coord.w = dot(e, vec2(0.5, 0.5)); } return coord.zw; } vec2 SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, vec3(dir, 1.0), coord.xyz); // @SearchDiag2Optimization // Fetch both edges at once using bilinear filtering: e = textureLod(edgesTex, coord.xy, 0.0).rg; e = SMAADecodeDiagBilinearAccess(e); // Non-optimized version: // e.g = SMAASampleLevelZero(edgesTex, coord.xy).g; // e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r; coord.w = dot(e, vec2(0.5, 0.5)); } return coord.zw; } /** * Similar to SMAAArea, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */ vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) { vec2 texcoord = mad(vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); // We do a scale and bias for mapping to texel space: texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Diagonal areas are on the second half of the texture: texcoord.x += 0.5; // Move to proper place, according to the subpixel offset: texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; // Do it! return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0)); } /** * This searches for diagonal patterns and returns the corresponding weights. */ vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, vec4 subsampleIndices) { vec2 weights = vec2(0.0, 0.0); // Search for the line ends: vec4 d; vec2 end; if (e.r > 0.0) { d.xz = SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), end); d.x += float(end.y > 0.9); } else d.xz = vec2(0.0, 0.0); d.yw = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), end); if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = mad(vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); vec4 c; c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2(-1, 0)).rg; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1, 0)).rg; c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); // Non-optimized version: // vec4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); // vec4 c; // c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2(-1, 0)).g; // c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2( 0, 0)).r; // c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1, 0)).g; // c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1, -1)).r; // Merge crossing edges at each side into a single value: vec2 cc = mad(vec2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.z); } // Search for the line ends: d.xz = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), end); if (SMAASampleLevelZeroOffset(edgesTex, texcoord, ivec2(1, 0)).r > 0.0) { d.yw = SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), end); d.y += float(end.y > 0.9); } else d.yw = vec2(0.0, 0.0); if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = mad(vec4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); vec4 c; c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2(-1, 0)).g; c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, ivec2( 0, -1)).r; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, ivec2( 1, 0)).gr; vec2 cc = mad(vec2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.w).gr; } return weights; } //----------------------------------------------------------------------------- // Horizontal/Vertical Search Functions /** * This allows to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */ float SMAASearchLength(sampler2D searchTex, vec2 e, float offset) { // The texture is flipped vertically, with left and right cases taking half // of the space horizontally: vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0); vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0); // Scale and bias to access texel centers: scale += vec2(-1.0, 1.0); bias += vec2( 0.5, -0.5); // Convert from pixel coordinates to texcoords: // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; // Lookup the search texture: return SMAA_SEARCHTEX_SELECT(textureLod(searchTex, mad(scale, e, bias), 0.0)); } /** * Horizontal/vertical search functions for the 2nd pass. */ float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { /** * @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ vec2 e = vec2(0.0, 1.0); while (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = mad(-vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.0), 3.25); return mad(SMAA_RT_METRICS.x, offset, texcoord.x); // Non-optimized version: // We correct the previous (-0.25, -0.125) offset we applied: // texcoord.x += 0.25 * SMAA_RT_METRICS.x; // The searches are bias by 1, so adjust the coords accordingly: // texcoord.x += SMAA_RT_METRICS.x; // Disambiguate the length added by the last step: // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0); // return mad(SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(0.0, 1.0); while (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = mad(vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.5), 3.25); return mad(-SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); while (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = mad(-vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.0), 3.25); return mad(SMAA_RT_METRICS.y, offset, texcoord.y); } float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); while (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = mad(vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.5), 3.25); return mad(-SMAA_RT_METRICS.y, offset, texcoord.y); } /** * Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */ vec2 SMAAArea(sampler2D area_tex, vec2 dist, float e1, float e2, float offset) { // Rounding prevents precision errors of bilinear filtering: vec2 texcoord = mad(vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * vec2(e1, e2)), dist); // We do a scale and bias for mapping to texel space: texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Move to proper place, according to the subpixel offset: texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); // Do it! return SMAA_AREATEX_SELECT(textureLod(area_tex, texcoord, 0.0)); } //----------------------------------------------------------------------------- // Corner Detection Functions void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) vec2 leftRight = step(d.xy, d.yx); vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. vec2 factor = vec2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(0, 1)).r; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(1, 1)).r; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(0, -2)).r; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(1, -2)).r; weights *= saturate(factor); #endif } void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) vec2 leftRight = step(d.xy, d.yx); vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; vec2 factor = vec2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2( 1, 0)).g; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2( 1, 1)).g; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, ivec2(-2, 0)).g; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, ivec2(-2, 1)).g; weights *= saturate(factor); #endif } //----------------------------------------------------------------------------- // Blending Weight Calculation Pixel Shader (Second Pass) void main() { vec4 subsampleIndices = vec4(0.0); // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. vec4 weights = vec4(0.0, 0.0, 0.0, 0.0); vec2 e = texture(edges_tex, texCoord).rg; if (e.g > 0.0) { // Edge at north #if !defined(SMAA_DISABLE_DIAG_DETECTION) // Diagonals have both north and west edges, so searching for them in // one of the boundaries is enough. weights.rg = SMAACalculateDiagWeights(edges_tex, area_tex, texCoord, e, subsampleIndices); // We give priority to diagonals, so if we find a diagonal we skip // horizontal/vertical processing. if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 #endif vec2 d; // Find the distance to the left: vec3 coords; coords.x = SMAASearchXLeft(edges_tex, search_tex, vOffset[0].xy, vOffset[2].x); coords.y = vOffset[1].y; // vOffset[1].y = texCoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) d.x = coords.x; // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to // discern what value each edge has: float e1 = textureLod(edges_tex, coords.xy, 0.0).r; // Find the distance to the right: coords.z = SMAASearchXRight(edges_tex, search_tex, vOffset[0].zw, vOffset[2].y); d.y = coords.z; // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixCoord.xx))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the right crossing edges: float e2 = SMAASampleLevelZeroOffset(edges_tex, coords.zy, ivec2(1, 0)).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = SMAAArea(area_tex, sqrt_d, e1, e2, subsampleIndices.y); // Fix corners: coords.y = texCoord.y; SMAADetectHorizontalCornerPattern(edges_tex, weights.rg, coords.xyzy, d); #if !defined(SMAA_DISABLE_DIAG_DETECTION) } else e.r = 0.0; // Skip vertical processing. #endif } if (e.r > 0.0) { // Edge at west vec2 d; // Find the distance to the top: vec3 coords; coords.y = SMAASearchYUp(edges_tex, search_tex, vOffset[1].xy, vOffset[2].z); coords.x = vOffset[0].x; // vOffset[1].x = texCoord.x - 0.25 * SMAA_RT_METRICS.x; d.x = coords.y; // Fetch the top crossing edges: float e1 = textureLod(edges_tex, coords.xy, 0.0).g; // Find the distance to the bottom: coords.z = SMAASearchYDown(edges_tex, search_tex, vOffset[1].zw, vOffset[2].w); d.y = coords.z; // We want the distances to be in pixel units: d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixCoord.yy))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the bottom crossing edges: float e2 = SMAASampleLevelZeroOffset(edges_tex, coords.xz, ivec2(0, 1)).g; // Get the area for this direction: weights.ba = SMAAArea(area_tex, sqrt_d, e1, e2, subsampleIndices.x); // Fix corners: coords.x = texCoord.x; SMAADetectVerticalCornerPattern(edges_tex, weights.ba, coords.xyxz, d); } fragColor = weights; }