// -*-C++-*-

// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
// Haze part added by Thorsten Renk, Oct. 2011


#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2

// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.


varying vec3 relPos;
varying vec3 worldPos;
varying vec3  VNormal;
varying vec3  VTangent;
varying vec4  ecPosition;
varying vec4  constantColor;
varying vec3 light_diffuse;


varying float yprime_alt;
varying float mie_angle;


uniform int colorMode;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt; 
uniform float avisibility;
uniform float visibility;
uniform float overcast;
uniform float ground_scattering;
uniform float eye_alt;
uniform float moonlight;

uniform mat4 osg_ViewMatrixInverse;

attribute vec3 tangent;//, binormal;

float earthShade;
float steepness;

// This is the value used in the skydome scattering shader - use the same here for consistency?
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;

float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
//x = x - 0.5;

// use the asymptotics to shorten computations
if (x < -15.0) {return 0.0;}

return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}


void main()
{


  vec4 light_ambient;
  vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
  vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;

  //float yprime_alt;
  float yprime;
  float lightArg;
  float intensity;
  float vertex_alt;
  float scattering;

    //rawPos = gl_Vertex.xy;
    worldPos = (osg_ViewMatrixInverse *gl_ModelViewMatrix * gl_Vertex).xyz;
    steepness = dot(normalize(gl_Normal), vec3 (0.0, 0.0, 1.0));

    // hack: World Scenery 2.0 triangle mesh doesn't yield sensible tangents
    // and normals, so we pretend that urban terrain is always close
    // to flat to get rid of back triangles in urban terrain

    //VNormal = normalize(gl_NormalMatrix * gl_Normal);
    //VTangent  = gl_NormalMatrix * tangent;
    VNormal = gl_NormalMatrix * vec3 (0.0,0.0,1.0);
    VTangent = gl_NormalMatrix * vec3 (0.0,-1.0,0.0);

    ecPosition = gl_ModelViewMatrix * gl_Vertex;
//    Normal = normalize(gl_Normal);
//    VBinormal = gl_NormalMatrix * binormal;


// this code is copied from default.vert

    //vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
    gl_Position = ftransform();
    gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
    //normal = gl_NormalMatrix * gl_Normal;
    vec4 ambient_color, diffuse_color;
    if (colorMode == MODE_DIFFUSE) {
        diffuse_color = gl_Color;
        ambient_color = gl_FrontMaterial.ambient;
    } else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
        diffuse_color = gl_Color;
        ambient_color = gl_Color;
    } else {
        diffuse_color = gl_FrontMaterial.diffuse;
        ambient_color = gl_FrontMaterial.ambient;
    }
   
    

    // here start computations for the haze layer
    // we need several geometrical quantities

    
// first current altitude of eye position in model space
    vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
    
    // and relative position to vector
    relPos = gl_Vertex.xyz - ep.xyz;

    // unfortunately, we need the distance in the vertex shader, although the more accurate version
    // is later computed in the fragment shader again
    float dist = length(relPos);


    // altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
    vertex_alt = max(gl_Vertex.z,100.0);
    scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt); 



// early culling of vertices which can't be seen due to ground haze despite being in aloft visibility range

float delta_z = hazeLayerAltitude - eye_alt;


    // branch dependent on daytime

if (terminator < 1000000.0) // the full, sunrise and sunset computation
{
    

    // establish coordinates relative to sun position

    vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
    vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
  

    
    // yprime is the distance of the vertex into sun direction
    yprime = -dot(relPos, lightHorizon);

    // this gets an altitude correction, higher terrain gets to see the sun earlier
    yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);

    // two times terminator width governs how quickly light fades into shadow
    // now the light-dimming factor
    earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
  
   // parametrized version of the Flightgear ground lighting function
    lightArg = (terminator-yprime_alt)/100000.0;

    // directional scattering for low sun
    if (lightArg < 10.0)
    	{mie_angle = (0.5 *  dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
    else 
	{mie_angle = 1.0;}




   light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
   light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
   light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);

   light_diffuse = light_diffuse * scattering;

   light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
   light_ambient.g = light_ambient.r * 0.4/0.33; 
   light_ambient.b = light_ambient.r * 0.5/0.33; 
   light_ambient.a = 1.0;



// correct ambient light intensity and hue before sunrise
if (earthShade < 0.5)
	{
	//light_ambient = light_ambient * (0.7 + 0.3 * smoothstep(0.2, 0.5, earthShade));
	intensity = length(light_ambient.rgb); 

	light_ambient.rgb = intensity * normalize(mix(light_ambient.xyz,  shadedFogColor, 1.0 -smoothstep(0.4, 0.8,earthShade) ));
	light_ambient.rgb = light_ambient.rgb +   moonLightColor *  (1.0 - smoothstep(0.4, 0.5, earthShade));

	intensity = length(light_diffuse.xyz); 
	light_diffuse.xyz = intensity * normalize(mix(light_diffuse.xyz,  shadedFogColor, 1.0 -smoothstep(0.4, 0.7,earthShade) ));
	}


// the haze gets the light at the altitude of the haze top if the vertex in view is below
// but the light at the vertex if the vertex is above

vertex_alt = max(vertex_alt,hazeLayerAltitude);

if (vertex_alt > hazeLayerAltitude)
	{
	if (dist > 0.8 * avisibility)
		{
		vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
		yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
		}
	}
else
	{
	vertex_alt = hazeLayerAltitude;
	yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
	}

}
else // the faster, full-day version without lightfields
{
    //vertex_alt = max(gl_Vertex.z,100.0);
 
    earthShade = 1.0;
    mie_angle = 1.0;
    
    if (terminator > 3000000.0)
    	{light_diffuse = vec3 (1.0, 1.0, 1.0);
	light_ambient = vec4 (0.33, 0.4, 0.5, 0.0); }
    else
	{

	lightArg = (terminator/100000.0 - 10.0)/20.0;
	light_diffuse.b = 0.78  + lightArg * 0.21;
	light_diffuse.g = 0.907 + lightArg * 0.091;
	light_diffuse.r = 0.904 + lightArg * 0.092;

	light_ambient.b = 0.41 + lightArg * 0.08;
	light_ambient.g = 0.333 + lightArg * 0.06;
	light_ambient.r = 0.316 + lightArg * 0.016;

	}  
    
    light_diffuse = light_diffuse * scattering;
    yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
 

// a sky/earth irradiation map model - the sky creates much more diffuse radiation than the ground, so
// steep faces end up shaded more

light_ambient = light_ambient * ((1.0+steepness)/2.0 * 1.2 + (1.0-steepness)/2.0 * 0.2);

// deeper shadows when there is lots of direct light

float shade_depth =  1.0 * smoothstep (0.6,0.95,ground_scattering) * (1.0-smoothstep(0.1,0.5,overcast)) * smoothstep(0.4,1.5,earthShade);

   light_ambient.rgb = light_ambient.rgb * (1.0 - shade_depth);
   light_diffuse.rgb = light_diffuse.rgb * (1.0 + 1.2 * shade_depth);

// default lighting based on texture and material using the light we have just computed

 gl_FrontColor = gl_Color;
    constantColor = gl_FrontMaterial.emission
        + gl_Color * (gl_LightModel.ambient + light_ambient);

	
}