// WS30 FRAGMENT SHADER // -*-C++-*- #version 130 #extension GL_EXT_texture_array : enable // written by Thorsten Renk, Oct 2011, based on default.frag // Ambient term comes in gl_Color.rgb. varying vec4 diffuse_term; varying vec3 normal; varying vec3 relPos; uniform sampler2D landclass; uniform sampler2DArray textureArray; uniform sampler1D dimensionsArray; uniform sampler1D diffuseArray; uniform sampler1D specularArray; uniform sampler2D perlin; varying float yprime_alt; varying float mie_angle; varying vec4 ecPosition; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float cloud_self_shading; // Passed from VPBTechnique, not the Effect uniform int tile_level; uniform float tile_width; uniform float tile_height; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float eShade; float fog_func (in float targ, in float alt); vec3 get_hazeColor(in float light_arg); vec3 filter_combined (in vec3 color) ; float getShadowing(); vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } // Test-phase code: float rand2D(in vec2 co); // Create random landclasses without a texture lookup to stress test // Each square of square_size in m is assigned a random landclass value int get_random_landclass(in vec2 co) { float square_size = 200.0; //float r = rand2D( floor(vec2(co.s*tile_width, co.t*tile_height)/square_size) ); float r = rand2D( floor(vec2(co.s*tile_height, co.t*tile_width)/square_size) ); int lc = int(r*48.0); // only 48 landclasses mapped so far return lc; } float Noise2D(in vec2 coord, in float wavelength); // End Test-phase code void main() { vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; // Oct 2021: // Geometry is in the form of roughly rectangular 'tiles' // with a mesh forming a grid with regular spacing. // Each vertex in the mesh is given an elevation // Tile dimensions in m vec2 tile_size = vec2(tile_width , tile_height); // Temp: sizes are the wrong way around currently tile_size.xy =tile_size.yx; // Tile texture coordinates range [0..1] over the tile 'rectangle' vec2 tile_coord = gl_TexCoord[0].st; // Look up the landclass id [0 .. 255] for this particular fragment // Each tile has 1 texture containing landclass ids stetched over it // Testing. Landclass sources: texture or random int tlc = int(texture2D(landclass, tile_coord.st).g * 255.0 + 0.5); //int rlc = get_random_landclass(tile_coord.st); int lc = tlc; // The landclass id is used to index into arrays containing // material parameters and textures for the landclass as // defined in the regional definitions float index = float(lc)/512.0; float mat_shininess = texture(dimensionsArray, index).z; vec4 mat_diffuse = texture(diffuseArray, index); vec4 mat_specular = texture(specularArray, index); vec4 color = gl_Color + mat_diffuse * NdotL * gl_LightSource[0].diffuse; // Testing code: // Use rlc even when looking up textures to recreate the extra performance hit // so any performance difference between the two is due to the texture lookup // color = color+0.00001*float(rlc); float effective_scattering = min(scattering, cloud_self_shading); vec4 light_specular = gl_LightSource[0].specular; // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. //n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(normal); NdotL = dot(n, lightDir); if (NdotL > 0.0) { float shadowmap = getShadowing(); color += diffuse_term * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (mat_shininess > 0.0) specular.rgb = (mat_specular.rgb * light_specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess) * shadowmap); } color.a = diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); // Look up ground textures by indexing into the texture array. // Different textures are stretched along the ground to different // lengths along each axes as set by and // regional definitions parameters // Look up stretching dimensions of textures in m - scaled to fit in [0..1], so rescale vec2 g_texture_stretch_dim = 10000.0 * texture(dimensionsArray, index).st; vec2 g_texture_scale = tile_size.xy / g_texture_stretch_dim.xy; // Ground texture coords vec2 st = g_texture_scale * tile_coord.st; // Rotate texture using the perlin texture as a mask to reduce tiling float pnoise1 = texture(perlin, st / 8.0).r; float pnoise2 = texture(perlin, - st / 16.0).r; //Testing: Non texture alternative //float pnoise1 = Noise2D(st, 8.0); //float pnoise2 = Noise2D(-st, 16.0); if (pnoise1 >= 0.5) st = g_texture_scale.st * tile_coord.ts; if (pnoise2 >= 0.5) st = -st; texel = texture(textureArray, vec3(st, lc)); fragColor = color * texel + specular; fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb); // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; float dist = length(relPos); float mvisibility = min(visibility,avisibility); if (dist > 0.04 * mvisibility) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // angle with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,mvisibility) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/visibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = fog_func(transmission_arg, alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) {eqColorFactor = 0.2;} float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // now dim the light for haze eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging //intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); // determine the right mix of transmission and haze fragColor.rgb = mix(hazeColor, fragColor.rgb,transmission); } fragColor.rgb = filter_combined(fragColor.rgb); gl_FragColor = fragColor; }