#version 330 core #extension GL_EXT_draw_instanced : enable layout(location = 0) in vec4 pos; layout(location = 1) in vec3 normal; layout(location = 2) in vec4 vertex_color; layout(location = 3) in vec4 multitexcoord0; layout(location = 9) in vec3 instancePosition; // (x,y,z) layout(location = 10) in vec3 instanceScale ; // (width, depth, height) layout(location = 11) in vec3 attrib1; // Generic packed attributes layout(location = 12) in vec3 attrib2; out VS_OUT { vec2 texcoord; vec3 vertex_normal; vec3 view_vector; } vs_out; uniform mat4 osg_ModelViewMatrix; uniform mat4 osg_ModelViewProjectionMatrix; uniform mat3 osg_NormalMatrix; const float c_precision = 128.0; const float c_precisionp1 = c_precision + 1.0; vec3 float2vec(float value) { vec3 val; val.x = mod(value, c_precisionp1) / c_precision; val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision; val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision; return val; } void main() { // Unpack generic attributes vec3 attr1 = float2vec(attrib1.x); vec3 attr2 = float2vec(attrib1.z); vec3 attr3 = float2vec(attrib2.x); // Determine the rotation for the building. float sr = sin(6.28 * attr1.x); float cr = cos(6.28 * attr1.x); vec3 position = pos.xyz; // Adjust the very top of the roof to match the rooftop scaling. This shapes // the rooftop - gambled, gabled etc. These vertices are identified by // vertex_color.z position.x = (1.0 - vertex_color.z) * position.x + vertex_color.z * ((position.x + 0.5) * attr3.z - 0.5); position.y = (1.0 - vertex_color.z) * position.y + vertex_color.z * (position.y * attrib2.y ); // Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z // Scale down by the building height (instanceScale.z) because // immediately afterwards we will scale UP the vertex to the correct scale. position.z = position.z + vertex_color.z * attrib1.y / instanceScale.z; position = position * instanceScale.xyz; // Rotation of the building and movement into position position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr))); position = position + instancePosition.xyz; gl_Position = osg_ModelViewProjectionMatrix * vec4(position, 1.0); // Texture coordinates are stored as: // - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), // and roof (rtex0x, rtex0y) // - a semi-shared (x1, y1) so that the front and side of the building can // have different texture mappings // // The vertex color value selects between them: // gl_Color.x=1 indicates front/back walls // gl_Color.y=1 indicates roof // gl_Color.z=1 indicates top roof vertexs (used above) // gl_Color.a=1 indicates sides // Finally, the roof texture is on the right of the texture sheet float wtex0x = attr1.y; // Front/Side texture X0 float wtex0y = attr1.z; // Front/Side texture Y0 float rtex0x = attr2.z; // Roof texture X0 float rtex0y = attr3.x; // Roof texture Y0 float wtex1x = attr2.x; // Front/Roof texture X1 float stex1x = attr3.y; // Side texture X1 float wtex1y = attr2.y; // Front/Roof/Side texture Y1 vec2 tex0 = vec2(sign(multitexcoord0.x) * (vertex_color.x*wtex0x + vertex_color.y*rtex0x + vertex_color.a*wtex0x), vertex_color.x*wtex0y + vertex_color.y*rtex0y + vertex_color.a*wtex0y); vec2 tex1 = vec2(vertex_color.x*wtex1x + vertex_color.y*wtex1x + vertex_color.a*stex1x, wtex1y); vs_out.texcoord.x = tex0.x + multitexcoord0.x * tex1.x; vs_out.texcoord.y = tex0.y + multitexcoord0.y * tex1.y; // Rotate the normal. vec3 N = normal; N.xy = vec2(dot(N.xy, vec2(cr, sr)), dot(N.xy, vec2(-sr, cr))); vs_out.vertex_normal = osg_NormalMatrix * N; vs_out.view_vector = (osg_ModelViewMatrix * vec4(position, 1.0)).xyz; }