/* * This is a library of noise functions, taking a coordinate vector and * a wavelength as input and returning a number [0:1] as output. * - Noise2D() is 2d Perlin noise. * - Noise3D() is 3d Perlin noise. * - DotNoise2D() is sparse dot noise and takes a dot density parameter. * - DropletNoise2D() is sparse dot noise modified to look like liquid and * takes a dot density parameter. * - VoronoiNoise2D() is a function mapping the terrain into random domains, * based on Voronoi tiling of a regular grid distorted with xrand and yrand. * - SlopeLines2D() computes a semi-random set of lines along the direction of * steepest descent, allowing to simulate e.g. water erosion patterns. * - Strata3D() computes a vertically stratified random pattern, appropriate * e.g. for rock textures * * Thorsten Renk 2014 */ #version 330 core float rand_2d(vec2 co) { return fract(sin(dot(co.xy, vec2(12.9898,78.233))) * 43758.5453); } float rand_3d(vec3 co) { return fract(sin(dot(co.xyz, vec3(12.9898,78.233,144.7272))) * 43758.5453); } float cosine_interpolate(float a, float b, float x) { float ft = x * 3.1415927; float f = (1.0 - cos(ft)) * 0.5; return a * (1.0 - f) + b * f; } float simple_interpolate(float a, float b, float x) { return a + smoothstep(0.0, 1.0, x) * (b - a); } float interpolated_noise_2d(vec2 coord) { float x = coord.x; float y = coord.y; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float v1 = rand_2d(vec2(integer_x, integer_y)); float v2 = rand_2d(vec2(integer_x + 1.0, integer_y)); float v3 = rand_2d(vec2(integer_x, integer_y + 1.0)); float v4 = rand_2d(vec2(integer_x + 1.0, integer_y + 1.0)); float i1 = simple_interpolate(v1, v2, fractional_x); float i2 = simple_interpolate(v3, v4, fractional_x); return simple_interpolate(i1, i2, fractional_y); } float interpolated_noise_3d(vec3 coord) { float x = coord.x; float y = coord.y; float z = coord.z; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float integer_z = z - fract(z); float fractional_z = z - integer_z; float v1 = rand_3d(vec3(integer_x, integer_y, integer_z)); float v2 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z)); float v3 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z)); float v4 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z)); float v5 = rand_3d(vec3(integer_x, integer_y, integer_z + 1.0)); float v6 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z + 1.0)); float v7 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z + 1.0)); float v8 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z + 1.0)); float i1 = simple_interpolate(v1, v5, fractional_z); float i2 = simple_interpolate(v2, v6, fractional_z); float i3 = simple_interpolate(v3, v7, fractional_z); float i4 = simple_interpolate(v4, v8, fractional_z); float ii1 = simple_interpolate(i1, i2, fractional_x); float ii2 = simple_interpolate(i3, i4, fractional_x); return simple_interpolate(ii1, ii2, fractional_y); } float noise_2d(vec2 coord, float wavelength) { return interpolated_noise_2d(coord / wavelength); } float noise_3d(vec3 coord, float wavelength) { return interpolated_noise_3d(coord / wavelength); } float voronoi_noise_2d(vec2 coord, float xrand, float yrand) { float x = coord.x; float y = coord.y; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float val[4]; val[0] = rand_2d(vec2(integer_x, integer_y)); val[1] = rand_2d(vec2(integer_x+1.0, integer_y)); val[2] = rand_2d(vec2(integer_x, integer_y+1.0)); val[3] = rand_2d(vec2(integer_x+1.0, integer_y+1.0)); float xshift[4]; xshift[0] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y)) - 0.5); xshift[1] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y)) -0.5); xshift[2] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y+1.0))-0.5); xshift[3] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.0))-0.5); float yshift[4]; yshift[0] = yrand * (rand_2d(vec2(integer_x, integer_y +0.5)) - 0.5); yshift[1] = yrand * (rand_2d(vec2(integer_x+1.0, integer_y+0.5)) -0.5); yshift[2] = yrand * (rand_2d(vec2(integer_x, integer_y+1.5))-0.5); yshift[3] = yrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.5))-0.5); float dist[4]; dist[0] = sqrt((fractional_x + xshift[0]) * (fractional_x + xshift[0]) + (fractional_y + yshift[0]) * (fractional_y + yshift[0])); dist[1] = sqrt((1.0 -fractional_x + xshift[1]) * (1.0-fractional_x+xshift[1]) + (fractional_y +yshift[1]) * (fractional_y+yshift[1])); dist[2] = sqrt((fractional_x + xshift[2]) * (fractional_x + xshift[2]) + (1.0-fractional_y +yshift[2]) * (1.0-fractional_y + yshift[2])); dist[3] = sqrt((1.0-fractional_x + xshift[3]) * (1.0-fractional_x + xshift[3]) + (1.0-fractional_y +yshift[3]) * (1.0-fractional_y + yshift[3])); int i_min; float dist_min = 100.0; for (int i = 0; i < 4; ++i) { if (dist[i] < dist_min) { dist_min = dist[i]; i_min = i; } } return val[i_min]; } float voronoi_noise_2d(vec2 coord, float wavelength, float xrand, float yrand) { return voronoi_noise_2d(coord / wavelength, xrand, yrand); }