// -*-C++-*- // Ambient term comes in gl_Color.rgb. #version 120 varying vec4 diffuse_term; varying vec3 normal; varying vec4 ecPosition; uniform sampler2D texture; uniform sampler2D orthophotoTexture; ////fog "include" ///// uniform int fogType; uniform bool orthophotoAvailable; vec3 fog_Func(vec3 color, int type); ////////////////////// float getShadowing(); vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } void main() { vec3 n; float NdotL, NdotHV, fogFactor; vec4 color = gl_Color; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 fragColor; vec4 specular = vec4(0.0); // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(n); NdotL = dot(n, lightDir); if (NdotL > 0.0) { float shadowmap = getShadowing(); color += diffuse_term * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (gl_FrontMaterial.shininess > 0.0) specular.rgb = (gl_FrontMaterial.specular.rgb * gl_LightSource[0].specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess) * shadowmap); } color.a = diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); texel = texture2D(texture, gl_TexCoord[0].st); if (orthophotoAvailable) { vec4 sat_texel = texture2D(orthophotoTexture, gl_TexCoord[2].st); if (sat_texel.a > 0) { texel.rgb = sat_texel.rgb; } } fragColor = color * texel + specular; fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb); fragColor.rgb = fog_Func(fragColor.rgb, fogType); gl_FragColor = fragColor; }