// -*-C++-*- #version 120 uniform float air_pollution; uniform int quality_level; uniform float fogstructure; uniform float cloud_self_shading; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float overcast; uniform float eye_alt; const float terminator_width = 200000.0; const float EarthRadius = 5800000.0; varying vec3 relPos; varying vec4 light_diffuse_comp; varying vec3 normal; varying vec3 worldPos; float Noise2D(in vec2 coord, in float wavelength); vec3 filter_combined (in vec3 color) ; float Noise3D(in vec3 coord, in float wavelength); const float AtmosphericScaleHeight = 8500.0; // Development tools: // Reduce haze to almost zero, while preserving lighting. Useful for observing distant tiles. // Keeps the calculation overhead. This can be used for profiling. // Possible values: 0:Normal, 1:Reduced haze. const int reduce_haze_without_removing_calculation_overhead = 0; // standard ALS fog function with exp(-d/D) fading and cutoff at low altitude and exp(-d^2/D^2) at high altitude float fog_func (in float targ, in float alt) { float fade_mix; targ = 1.25 * targ * smoothstep(0.04,0.06,targ); // need to sync with the distance to which terrain is drawn // for large altitude > 30 km, we switch to some component of quadratic distance fading to // create the illusion of improved visibility range if (alt < 30000.0) { return exp(-targ - targ * targ * targ * targ); } else if (alt < 50000.0) { fade_mix = (alt - 30000.0)/20000.0; return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0)); } else { return exp(- targ * targ - pow(targ,4.0)); } } // altitude correction for exponential drop in atmosphere density float alt_factor(in float eye_alt, in float vertex_alt) { float h0 = AtmosphericScaleHeight; float h1 = min(eye_alt,vertex_alt); float h2 = max(eye_alt,vertex_alt); if ((h2-h1) < 200.0) // use a Taylor-expanded version { return 0.5 * (exp(-h2/h0) + exp(-h1/h0)); } else { return h0/(h2-h1) * (exp(-h1/h0) - exp(-h2/h0)); } } // Rayleigh in-scatter function float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt) { float fade_length = avisibility * (2.5 - 2.2 * sqrt(air_pollution)); fade_length = fade_length / alt_factor(eye_alt, vertex_alt); return 1.0-exp(-dist/max(15000.0,fade_length)); } // Rayleigh out-scattering color shift vec3 rayleigh_out_shift(in vec3 color, in float outscatter) { color.r = color.r * (1.0 - 0.4 * outscatter); color.g = color.g * (1.0 - 0.8 * outscatter); color.b = color.b * (1.0 - 1.6 * outscatter); return color; } // the generalized logistic function used to compute lightcurves float light_curve (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) { return e; } if (x < -15.0) { return 0.0; } return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // the haze color function vec3 get_hazeColor(in float lightArg) { vec3 hazeColor; hazeColor.r = light_curve(lightArg, 8.305e-06, 0.161, 4.827-3.0 *air_pollution, 3.04e-05, 1.0); hazeColor.g = light_curve(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0); hazeColor.b = light_curve(lightArg, 1.330e-05, 0.264, 1.527+ 2.0*air_pollution, 1.08e-05, 1.0); return hazeColor; } // Apply the ALS haze model to a given fragment vec4 applyHaze(inout vec4 fragColor, inout vec3 hazeColor, in vec3 secondary_light, in float ct, in float hazeLayerAltitude, in float visibility, in float avisibility, in float dist, in float lightArg, in float mie_angle) { float mvisibility = min(visibility,avisibility); if (dist > 0.04 * mvisibility) { float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; float intensity; float eShade; float delta_z = hazeLayerAltitude - eye_alt; float effective_scattering = min(scattering, cloud_self_shading); float yprime_alt = light_diffuse_comp.a; vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); vec3 lightDir = gl_LightSource[0].position.xyz; vec3 n = normal; n = normalize(n); // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) { // we're inside the layer if (ct < 0.0) { // we look down distance_in_layer = dist; vAltitude = min(distance_in_layer,mvisibility) * ct; delta_zv = delta_z - vAltitude; } else { // we may look through upper layer edge H = dist * ct; if (H > delta_z) { distance_in_layer = dist/H * delta_z; } else { distance_in_layer = dist; } vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else { // we see the layer from above, delta_z < 0.0 H = dist * -ct; if (H < (-delta_z)) { // we don't see into the layer at all, aloft visibility is the only fading distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } if ((quality_level > 4) && (abs(delta_z) < 400.0)) { float blur_thickness = 50.0; float cphi = dot(vec3(0.0, 1.0, 0.0), relPos)/dist; float ctlayer = delta_z/dist-0.01 + 0.02 * Noise2D(vec2(cphi,1.0),0.1) -0.01; float ctblur = 0.035 ; float blur_dist; blur_dist = dist * (1.0-smoothstep(0.0,300.0,-delta_z)) * smoothstep(-400.0,-200.0, -delta_z); blur_dist = blur_dist * smoothstep(ctlayer-4.0*ctblur, ctlayer-ctblur, ct) * (1.0-smoothstep(ctlayer+0.5*ctblur, ctlayer+ctblur, ct)); distance_in_layer = max(distance_in_layer, blur_dist); } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (quality_level > 3) { float noise_1500m = Noise3D(worldPos.xyz, 1500.0); float noise_2000m = Noise3D(worldPos.xyz, 2000.0); transmission_arg = transmission_arg + (distance_in_layer/(1.0 * mvisibility + 1.0 * mvisibility * fogstructure * 0.06 * (noise_1500m + noise_2000m -1.0) )); } else { transmission_arg = transmission_arg + (distance_in_layer/mvisibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/mvisibility - (1.0 - effective_scattering); transmission = fog_func(transmission_arg, eye_alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; // now dim the light for haze eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) { intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } intensity = length(hazeColor); if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly { // high altitude desaturation of the haze color hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, eye_alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(n,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); } // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor.rgb *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); // Testing phase controls if (reduce_haze_without_removing_calculation_overhead == 1) { transmission = 1.0 - (transmission/1000000.0); } // finally, mix fog in if (quality_level > 4) { float backscatter = 0.5* min(1.0,10000.0/(mvisibility*mvisibility)); fragColor.rgb = mix(hazeColor+secondary_light * backscatter , fragColor.rgb,transmission); } else { fragColor.rgb = mix(clamp(hazeColor,0.0,1.0) , clamp(fragColor.rgb,0.0,1.0),transmission); } } // end if (dist > 0.04 * mvisibility) fragColor.rgb = filter_combined(fragColor.rgb); return fragColor; }