// This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // © Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // © Emilian Huminiuc and Vivian Meazza #version 120 uniform sampler2D water_normalmap; uniform sampler2D water_reflection; uniform sampler2D water_dudvmap; uniform sampler2D water_reflection_grey; uniform sampler2D sea_foam; uniform sampler2D perlin_normalmap; uniform sampler3D Noise; uniform float saturation, Overcast, WindE, WindN; uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4; uniform float osg_SimulationTime; uniform int Status; varying vec4 waterTex1; //moving texcoords varying vec4 waterTex2; //moving texcoords varying vec4 waterTex4; //viewts varying vec4 ecPosition; varying vec3 viewerdir; varying vec3 lightdir; varying vec3 normal; uniform float WaveFreq ; uniform float WaveAmp ; uniform float WaveSharp ; ////fog "include" ///// uniform int fogType; vec3 fog_Func(vec3 color, int type); ////////////////////// /////// functions ///////// void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } void main(void) { const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005); const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02); const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25); mat4 RotationMatrix; // compute direction to viewer vec3 E = normalize(viewerdir); // compute direction to light source vec3 L = normalize(lightdir); // half vector vec3 H = normalize(L + E); vec3 Normal = normalize(normal); const float water_shininess = 240.0; // approximate cloud cover float cover = 0.0; //bool Status = true; float windEffect = sqrt(pow(abs(WindE),2)+pow(abs(WindN),2)) * 0.6; //wind speed in kt float windScale = 15.0/(3.0 + windEffect); //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter float waveRoughness = 0.05 + smoothstep(0.0, 20.0, windEffect); //wave roughness filter float mixFactor = 0.75 - 0.15 * smoothstep(0.0, 40.0, windEffect); mixFactor = clamp(mixFactor, 0.3, 0.8); if (Status == 1){ cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4); } else { // hack to allow for Overcast not to be set by Local Weather if (Overcast == 0){ cover = 5; } else { cover = Overcast * 5; } } vec4 viewt = normalize(waterTex4); vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0; vec4 dist = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)* windScale) * 2.0 - 1.0; dist *= (0.6 + 0.5 * smoothstep(0.0, 15.0, windEffect)); vec4 fdist = normalize(dist); fdist = -fdist; //dds fix fdist *= sca; //normalmaps rotationmatrix(radians(3.0 * windScale + 0.6 * sin(waterTex1.s * 0.2)), RotationMatrix); vec4 nmap = texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0; vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1/** RotationMatrix*/ + disdis * sca2) * windScale) * 2.0 - 1.0; rotationmatrix(radians(-2.0 * windScale -0.4 * sin(waterTex1.s * 0.32)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 1.5) * 2.0 - 1.0; //nmap1 += texture2D(perlin_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0; rotationmatrix(radians(1.5 * windScale + 0.3 * sin(waterTex1.s * 0.16)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 2.1) * 2.0 - 1.0; rotationmatrix(radians(-0.5 * windScale - 0.45 * sin(waterTex1.s * 0.28)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 0.8) * 2.0 - 1.0; rotationmatrix(radians(-1.2 * windScale - 0.35 * sin(waterTex1.s * 0.28)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix* tscale) * windScale * 1.7) * 2.0 - 1.0; nmap1 += texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * tscale) * windScale) * 2.0 - 1.0; nmap *= windEffect_low; nmap1 *= windEffect_low; // mix water and noise, modulated by factor vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness); //vNorm.r += ddx; vNorm = -vNorm; //dds fix //load reflection vec4 tmp = vec4(lightdir, 0.0); vec4 refTex; vec4 refl; // cover = 0; if(cover >= 1.5){ refTex = texture2D(water_reflection, vec2(tmp)); refl= normalize(refTex); } else { refTex = texture2D(water_reflection_grey, vec2(tmp)); refl = normalize(refTex); refl.r *= (0.75 + 0.15 * cover); refl.g *= (0.80 + 0.15 * cover); refl.b *= (0.875 + 0.125 * cover); refl.a *= 1.0; } rotationmatrix(radians(2.1* windScale + 0.25 * sin(waterTex1.s *0.14)), RotationMatrix); vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 1.15) * 2.0 - 1.0); vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1/** RotationMatrix*/ + disdis * sca) * windScale) * 2.0 - 1.0); rotationmatrix(radians(-1.5 * windScale -0.32 * sin(waterTex1.s *0.24)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex2* RotationMatrix * tscale) * windScale * 1.8) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * tscale) * windScale) * 2.0 - 1.0); rotationmatrix(radians(3.8 * windScale + 0.45 * sin(waterTex1.s *0.32)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale * 0.85) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * (tscale + sca2)) * windScale) * 2.0 - 1.0); rotationmatrix(radians(-2.8 * windScale - 0.38 * sin(waterTex1.s * 0.26)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale * 2.1) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 /** RotationMatrix*/ + disdis * sca) * windScale) * 2.0 - 1.0); N0 *= windEffect_low; N1 *= windEffect_low; vec3 N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness); //N.r += ddx; //N.g += ddy; N = -N; //dds fix // specular vec3 specular_color = vec3(gl_LightSource[0].diffuse) * pow(max(0.0, dot(N, H)), water_shininess) * 6.0; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3 ; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; //calculate the fog factor float fogFactor; float fogCoord = ecPosition.z; const float LOG2 = 1.442695; fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2); if(gl_Fog.density == 1.0) fogFactor=1.0; //calculate final colour vec4 ambient_light = gl_LightSource[0].diffuse; vec4 finalColor; if(cover >= 1.5){ finalColor = refl + specular; } else { finalColor = refl; } float foamSlope = 0.10 + 0.1 * windScale; //float waveSlope = mix(N0.g, N1.g, 0.25); vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0); float waveSlope = N.g; if (windEffect >= 8.0) if (waveSlope >= foamSlope){ finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, N.g)); } finalColor *= ambient_light; //gl_FragColor = mix(gl_Fog.color, finalColor, fogFactor); finalColor.rgb = fog_Func(finalColor.rgb, fogType); gl_FragColor = finalColor; }