// -*- mode: C; -*-
// Licence: GPL v2
// Author: Frederic Bouvier.
//  Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces

#version 120

#define TEXTURE_MIP_LEVELS 10
#define TEXTURE_PIX_COUNT  1024 //pow(2,TEXTURE_MIP_LEVELS)
#define BINARY_SEARCH_COUNT 10
#define BILINEAR_SMOOTH_FACTOR 2.0

varying vec4  rawpos;
varying vec4  ecPosition;
varying vec3  VNormal;
varying vec3  VTangent;
varying vec3  VBinormal;
varying vec3  Normal;
varying vec4  constantColor;

uniform sampler3D NoiseTex;
uniform sampler2D BaseTex;
uniform sampler2D NormalTex;
uniform sampler2D QDMTex;
uniform float depth_factor;
uniform float tile_size;
uniform float quality_level; // From /sim/rendering/quality-level
uniform float snowlevel; // From /sim/rendering/snow-level-m
uniform vec3 night_color;

const float scale = 1.0;
int linear_search_steps = 10;
int GlobalIterationCount = 0;
int gIterationCap = 64;

void QDM(inout vec3 p, inout vec3 v)
{
	const int MAX_LEVEL = TEXTURE_MIP_LEVELS;
	const float NODE_COUNT = TEXTURE_PIX_COUNT;
	const float TEXEL_SPAN_HALF = 1.0 / NODE_COUNT / 2.0;

	float fDeltaNC = TEXEL_SPAN_HALF * depth_factor;

	vec3 p2 = p;
	float level = MAX_LEVEL;
    vec2 dirSign = (sign(v.xy) + 1.0) * 0.5;
    GlobalIterationCount = 0;
    float d = 0.0;

	while (level >= 0.0 && GlobalIterationCount < gIterationCap)
	{
		vec4 uv = vec4(p2.xyz, level);
		d = texture2DLod(QDMTex, uv.xy, uv.w).w;

		if (d > p2.z)
		{
			//predictive point of ray traversal
			vec3 tmpP2 = p + v * d;

			//current node count
			float nodeCount = pow(2.0, (MAX_LEVEL - level));
			//current and predictive node ID
			vec4 nodeID = floor(vec4(p2.xy, tmpP2.xy)*nodeCount);

			//check if we are crossing the current cell
			if (nodeID.x != nodeID.z || nodeID.y != nodeID.w)
			{
				//calculate distance to nearest bound
				vec2 a = p2.xy - p.xy;
				vec2 p3 = (nodeID.xy + dirSign) / nodeCount;
				vec2 b = p3.xy - p.xy;

				vec2 dNC = (b.xy * p2.z) / a.xy;
				//take the nearest cell
				d = min(d,min(dNC.x, dNC.y))+fDeltaNC;

				level++;

				//use additional convergence speed-up
	            #ifdef USE_QDM_ASCEND_INTERVAL
			    if(frac(level*0.5) > EPSILON)
				  level++;
				#elseif USE_QDM_ASCEND_CONST
				 level++;
				#endif
			}
			p2 = p + v * d;
		}
		level--;
		GlobalIterationCount++;
	}

	//
	// Manual Bilinear filtering
	//
	float rayLength =  length(p2.xy - p.xy) + fDeltaNC;

	float dA = p2.z * (rayLength - BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;
	float dB = p2.z * (rayLength + BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;

	vec4 p2a = vec4(p + v * dA, 0.0);
	vec4 p2b = vec4(p + v * dB, 0.0);
	dA = texture2DLod(NormalTex, p2a.xy, p2a.w).w;
	dB = texture2DLod(NormalTex, p2b.xy, p2b.w).w;

	dA = abs(p2a.z - dA);
	dB = abs(p2b.z - dB);

	p2 = mix(p2a.xyz, p2b.xyz, dA / (dA + dB));

	p = p2;
}

float ray_intersect_QDM(vec2 dp, vec2 ds)
{
    vec3 p = vec3( dp, 0.0 );
    vec3 v = vec3( ds, 1.0 );
    QDM( p, v );
    return p.z;
}

float ray_intersect_relief(vec2 dp, vec2 ds)
{
	float size = 1.0 / float(linear_search_steps);
	float depth = 0.0;
	float best_depth = 1.0;

	for(int i = 0; i < linear_search_steps - 1; ++i)
	{
		depth += size;
		float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
		if(best_depth > 0.996)
			if(depth >= t)
				best_depth = depth;
	}
	depth = best_depth;

	const int binary_search_steps = 5;

	for(int i = 0; i < binary_search_steps; ++i)
	{
		size *= 0.5;
		float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
		if(depth >= t)
		{
			best_depth = depth;
			depth -= 2.0 * size;
		}
		depth += size;
	}

	return(best_depth);
}

float ray_intersect(vec2 dp, vec2 ds)
{
    if ( quality_level >= 4.0 )
        return ray_intersect_QDM( dp, ds );
    else
        return ray_intersect_relief( dp, ds );
}

void main (void)
{
	if ( quality_level >= 3.5 ) {
		linear_search_steps = 20;
	}
	vec3 ecPos3 = ecPosition.xyz / ecPosition.w;
	vec3 V = normalize(ecPos3);
	vec3 s = vec3(dot(V, VTangent), dot(V, VBinormal), dot(VNormal, -V));
	vec2 ds = s.xy * depth_factor / s.z;
	vec2 dp = gl_TexCoord[0].st - ds;
	float d = ray_intersect(dp, ds);

	vec2 uv = dp + ds * d;
	vec3 N = texture2D(NormalTex, uv).xyz * 2.0 - 1.0;


	float emis = N.z;
	N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy)));
	float Nz = N.z;
	N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal);

	vec3 l = gl_LightSource[0].position.xyz;
	vec3 diffuse = gl_Color.rgb * max(0.0, dot(N, l));
	float shadow_factor = 1.0;

	// Shadow
	if ( quality_level >= 3.0 ) {
		dp += ds * d;
		vec3 sl = normalize( vec3( dot( l, VTangent ), dot( l, VBinormal ), dot( -l, VNormal ) ) );
		ds = sl.xy * depth_factor / sl.z;
		dp -= ds * d;
		float dl = ray_intersect(dp, ds);
		if ( dl < d - 0.05 )
			shadow_factor = dot( constantColor.xyz, vec3( 1.0, 1.0, 1.0 ) ) * 0.25;
	}
	// end shadow

	vec4 ambient_light = constantColor + gl_LightSource[0].diffuse * vec4(diffuse, 1.0);
	float reflectance = ambient_light.r * 0.3 + ambient_light.g * 0.59 + ambient_light.b * 0.11;
	if ( shadow_factor < 1.0 )
		ambient_light = constantColor + gl_LightSource[0].diffuse * shadow_factor * vec4(diffuse, 1.0);
	float emission_factor = (1.0 - smoothstep(0.15, 0.25, reflectance)) * emis;
	vec4 tc = texture2D(BaseTex, uv);
	emission_factor *= 0.5*pow(tc.r+0.8*tc.g+0.2*tc.b, 2.0) -0.2;
	ambient_light += (emission_factor * vec4(night_color, 0.0));

	float fogFactor;
	float fogCoord = ecPos3.z / (1.0 + smoothstep(0.3, 0.7, emission_factor));
	const float LOG2 = 1.442695;
	fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2);
	fogFactor = clamp(fogFactor, 0.0, 1.0);

	vec4 noisevec   = texture3D(NoiseTex, (rawpos.xyz)*0.01*scale);
	vec4 nvL   = texture3D(NoiseTex, (rawpos.xyz)*0.00066*scale);

	float n=0.06;
	n += nvL[0]*0.4;
	n += nvL[1]*0.6;
	n += nvL[2]*2.0;
	n += nvL[3]*4.0;
	n += noisevec[0]*0.1;
	n += noisevec[1]*0.4;

	n += noisevec[2]*0.8;
	n += noisevec[3]*2.1;
	n = mix(0.6, n, fogFactor);

	vec4 finalColor = texture2D(BaseTex, uv);
	finalColor = mix(finalColor, clamp(n+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0),
			step(0.8,Nz)*(1.0-emis)*smoothstep(snowlevel+300.0, snowlevel+360.0, (rawpos.z)+nvL[1]*3000.0));
	finalColor *= ambient_light;

	if (gl_Fog.density == 1.0)
		fogFactor=1.0;

	vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depth_factor / s.z, 1.0 );
	vec4 iproj = gl_ProjectionMatrix * p;
	iproj /= iproj.w;
	gl_FragColor = mix(gl_Fog.color ,finalColor, fogFactor);
	gl_FragDepth = (iproj.z+1.0)/2.0;
}