# These classes provide basic functions for use in aircraft specific # Nasal context. Note that even if a class is called "door" or "light" # this doesn't mean that it can't be used for other purposes. # # Class instances don't have to be assigned to variables. They do also # work if they remain anonymous. It's even a good idea to keep them # anonymous if you don't need further access to their members. On the # other hand, you can assign the class and apply setters at the same time: # # aircraft.light.new("sim/model/foo/beacon", [1, 1]); # anonymous # var strobe = aircraft.light.new("sim/model/foo/strobe", [1, 1]).cont().switch(1); # # # Classes do create properties, but they don't usually overwrite the contents # of an existing property. This makes it possible to preset them in # a *-set.xml file or on the command line. For example: # # $ fgfs --aircraft=bo105 --prop:/controls/doors/door[0]/position-norm=1 # # # Wherever a property argument can be given, this can either be a path, # or a node (i.e. property node hash). In return, the property node can # always be accessed directly as member "node", and turned into a path # string with node.getPath(): # # var beacon = aircraft.light.new("sim/model/foo/beacon", [1, 1]); # print(beacon.node.getPath()); # # var strobe_node = props.globals.getNode("sim/model/foo/strobe", 1); # var strobe = aircraft.light.new(strobe_node, [0.05, 1.0]); # # # The classes implement only commonly used features, but are easy to # extend, as all class members are accessible from outside. For example: # # # add custom property to door node: # frontdoor.node.getNode("name", 1).setValue("front door"); # # # add method to class instance (or base class -> aircraft.door.print) # frontdoor.print = func { print(me.position.getValue()) }; # # # helper functions # ============================================================================== # creates (if necessary) and returns a property node from arg[0], # which can be a property node already, or a property path # makeNode = func { if (isa(arg[0], props.Node)) { return arg[0]; } else { return props.globals.getNode(arg[0], 1); } } # returns arg[1]-th optional argument of vector arg[0] or default value arg[2] # optarg = func { if (size(arg[0]) > arg[1] and arg[0][arg[1]] != nil) { arg[0][arg[1]]; } else { arg[2]; } } # door # ============================================================================== # class for objects moving at constant speed, with the ability to # reverse moving direction at any point. Appropriate for doors, canopies, etc. # # SYNOPSIS: # door.new(, [, ]); # # property ... door node: property path or node # swingtime ... time in seconds for full movement (0 -> 1) # startpos ... initial position (default: 0) # # PROPERTIES: # ./position-norm (double) (default: ) # ./enabled (bool) (default: 1) # # EXAMPLE: # var canopy = aircraft.door.new("sim/model/foo/canopy", 5); # canopy.open(); # door = { new : func { m = { parents : [door] }; m.node = makeNode(arg[0]); m.swingtime = arg[1]; m.positionN = m.node.getNode("position-norm", 1); m.enabledN = m.node.getNode("enabled", 1); if (m.enabledN.getValue() == nil) { m.enabledN.setBoolValue(1); } pos = optarg(arg, 2, 0); if (m.positionN.getValue() == nil) { m.positionN.setDoubleValue(pos); } m.target = pos < 0.5; return m; }, # door.enable(bool) -> set ./enabled enable : func { me.enabledN.setBoolValue(arg[0]); me }, # door.setpos(double) -> set ./position-norm without movement setpos : func { me.positionN.setValue(arg[0]); me.target = arg[0] < 0.5; me }, # double door.getpos() -> return current position as double getpos : func { me.positionN.getValue() }, # door.close() -> move to closed state close : func { me.move(me.target = 0) }, # door.open() -> move to open state open : func { me.move(me.target = 1) }, # door.toggle() -> move to opposite end position toggle : func { me.move(me.target) }, # door.stop() -> stop movement stop : func { interpolate(me.positionN) }, # door.move(double) -> move to arbitrary position move : func { time = abs(me.getpos() - arg[0]) * me.swingtime; interpolate(me.positionN, arg[0], time); me.target = !me.target; }, }; # light # ============================================================================== # class for generation of pulsing values. Appropriate for controlling # beacons, strobes, etc. # # SYNOPSIS: # light.new(, [, ]); # light.new(, , [, ]); # # property ... light node: property path or node # stretch ... multiplicator for all pattern values # pattern ... array of on/off time intervals (in seconds) # switch ... property path or node to use as switch (default: ./enabled) # instead of ./enabled # # PROPERTIES: # ./state (bool) (default: 0) # ./enabled (bool) (default: 0) except if given) # # EXAMPLES: # aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]); # anonymous light # # var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1], # "controls/lighting/strobe"); # strobe.switch(1); # # var pattern = [0.05, 0.05, 0.05, 1]; # aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, "controls/lighting/strobe"); # aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, "controls/lighting/strobe"); # light = { new : func { m = { parents : [light] }; m.node = makeNode(arg[0]); var stretch = 1.0; var c = 1; if (typeof(arg[c]) == "scalar") { stretch = arg[c]; c += 1; } if (typeof(arg[c]) != "vector") { die("aircraft.nas: the arguments of aircraft.light.new() have changed!\n" ~ " *** BEFORE: aircraft.light.new(property, 0.1, 0.9, switch)\n" ~ " *** NOW: aircraft.light.new(property, [0.1, 0.9], switch)"); } m.pattern = arg[c]; c += 1; if (size(arg) > c and arg[c] != nil) { m.switchN = makeNode(arg[c]); } else { m.switchN = m.node.getNode("enabled", 1); } if (m.switchN.getValue() == nil) { m.switchN.setBoolValue(0); } m.stateN = m.node.getNode("state", 1); if (m.stateN.getValue() == nil) { m.stateN.setBoolValue(0); } forindex (var i; m.pattern) { m.pattern[i] *= stretch; } m.index = 0; m.loopid = 0; m.continuous = 0; m.lastswitch = 0; m.switchL = setlistener(m.switchN, func { m._switch_() }, 1); return m; }, # class destructor del : func { removelistener(me.switchL); }, # light.switch(bool) -> set light switch (also affects other lights # that use the same switch) switch : func(v) { me.switchN.setBoolValue(v); me }, # light.toggle() -> toggle light switch toggle : func { me.switchN.setBoolValue(!me.switchN.getValue()); me }, # light.cont() -> continuous light cont : func { if (!me.continuous) { me.continuous = 1; me.loopid += 1; me.stateN.setBoolValue(me.lastswitch); } me; }, # light.blink() -> blinking light (default) blink : func { if (me.continuous) { me.continuous = 0; me.index = 0; me.stateN.setBoolValue(0); me.lastswitch and me._loop_(me.loopid += 1); } me; }, _switch_ : func { var switch = me.switchN.getBoolValue(); switch != me.lastswitch or return; me.lastswitch = switch; me.loopid += 1; if (me.continuous or !switch) { me.stateN.setBoolValue(switch); } elsif (switch) { me.stateN.setBoolValue(0); me.index = 0; me._loop_(me.loopid); } }, _loop_ : func(id) { id == me.loopid or return; me.stateN.setBoolValue(!me.stateN.getBoolValue()); settimer(func { me._loop_(id) }, me.pattern[me.index]); if ((me.index += 1) >= size(me.pattern)) { me.index = 0; } }, }; # lowpass # ============================================================================== # class that implements a variable-interval EWMA (Exponentially Weighted # Moving Average) lowpass filter with characteristics independent of the # frame rate. # # SYNOPSIS: # lowpass.new(); # # EXAMPLE: # var lp = aircraft.lowpass.new(0.5); # print(lp.filter(10)); # prints 10 # print(lp.filter(0)); # lowpass = { new : func(coeff) { var m = { parents : [lowpass] }; m.dtN = props.globals.getNode("/sim/time/delta-realtime-sec", 1); m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0"); m.value = nil; return m; }, # filter(raw_value) -> push new value, returns filtered value filter : func(v) { me.filter = me._filter_; me.value = v; }, # get() -> returns filtered value get : func { me.value; }, # set() -> sets new average set : func(v) { me.value = v; }, _filter_ : func(v) { var dt = me.dtN.getValue(); var c = dt / (me.coeff + dt); me.value = v * c + me.value * (1 - c); }, }; # HUD control class to handle both HUD implementations. # HUDControl = { new : func { var m = { parents : [HUDControl] }; m.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1); m.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1); m.currcolN = props.globals.getNode("/sim/hud/current-color", 1); m.paletteN = props.globals.getNode("/sim/hud/palette", 1); m.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1); m.currentN = m.vis0N; return m; }, cycle_color : func { # h-key if (!me.currentN.getBoolValue()) { # if off, turn on return me.currentN.setBoolValue(1); } var i = me.currcolN.getValue() + 1; # if through, turn off if (i < 0 or i >= size(me.paletteN.getChildren("color"))) { me.currentN.setBoolValue(0); me.currcolN.setIntValue(0); } else { # otherwise change color me.currentN.setBoolValue(1); me.currcolN.setIntValue(i); } }, cycle_brightness : func { # H-key var br = me.brightnessN.getValue() - 0.2; me.brightnessN.setValue(br > 0.01 ? br : 1); }, normal_type : func { # i-key me.oldinit1(); me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.currentN = me.vis0N; }, cycle_type : func { # I-key if (me.currentN == me.vis0N) { me.vis0N.setBoolValue(0); me.vis1N.setBoolValue(1); me.currentN = me.vis1N; } elsif (me.currentN == me.vis1N) { me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.oldinit2(); me.currentN = me.vis0N; } }, oldinit1 : func { fgcommand("hud-init", props.Node.new()) }, oldinit2 : func { fgcommand("hud-init2", props.Node.new()) }, }; var HUD = nil; settimer(func { HUD = HUDControl.new() }, 0);