// WS30 FRAGMENT SHADER // -*-C++-*- #version 130 #extension GL_EXT_texture_array : enable varying vec3 normal; varying vec4 ecPosition; uniform sampler2D landclass; uniform sampler2DArray atlas; uniform sampler2D perlin; // Passed from VPBTechnique, not the Effect uniform float fg_tileWidth; uniform float fg_tileHeight; uniform bool fg_photoScenery; uniform vec4 fg_dimensionsArray[128]; uniform vec4 fg_ambientArray[128]; uniform vec4 fg_diffuseArray[128]; uniform vec4 fg_specularArray[128]; uniform vec4 fg_textureLookup1[128]; uniform vec4 fg_textureLookup2[128]; uniform mat4 fg_zUpTransform; uniform vec3 fg_modelOffset; // See include_fog.frag uniform int fogType; vec3 fog_Func(vec3 color, int type); // See Shaders/shadows-include.frag float getShadowing(); // See Shaders/clustered-include.frag vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); void main() { float NdotL, NdotHV, fogFactor; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 fragColor; vec4 specular = vec4(0.0); // Material properties. // Material properties. vec4 mat_diffuse, mat_ambient, mat_specular; float mat_shininess; if (fg_photoScenery) { mat_ambient = vec4(1.0,1.0,1.0,1.0); mat_diffuse = vec4(1.0,1.0,1.0,1.0); mat_specular = vec4(0.1, 0.1, 0.1, 1.0); mat_shininess = 1.2; texel = texture(landclass, vec2(gl_TexCoord[0].s, 1.0 - gl_TexCoord[0].t)); } else { // The Landclass for this particular fragment. This can be used to // index into the atlas textures. int lc = int(texture2D(landclass, gl_TexCoord[0].st).g * 255.0 + 0.5); uint tex1 = uint(fg_textureLookup1[lc].r * 255.0 + 0.5); // Color Mode is always AMBIENT_AND_DIFFUSE, which means // using a base colour of white for ambient/diffuse, // rather than the material color from ambientArray/diffuseArray. mat_ambient = vec4(1.0,1.0,1.0,1.0); mat_diffuse = vec4(1.0,1.0,1.0,1.0); mat_specular = fg_specularArray[lc]; mat_shininess = fg_dimensionsArray[lc].z; // Different textures have different have different dimensions. vec2 atlas_dimensions = fg_dimensionsArray[lc].st; vec2 atlas_scale = vec2(fg_tileWidth / atlas_dimensions.s, fg_tileHeight / atlas_dimensions.t ); vec2 st = atlas_scale * gl_TexCoord[0].st; // Rotate texture using the perlin texture as a mask to reduce tiling if (step(0.5, texture(perlin, atlas_scale * gl_TexCoord[0].st / 8.0).r) == 1.0) { st = vec2(atlas_scale.s * gl_TexCoord[0].t, atlas_scale.t * gl_TexCoord[0].s); } if (step(0.5, texture(perlin, - atlas_scale * gl_TexCoord[0].st / 16.0).r) == 1.0) { st = -st; } texel = texture(atlas, vec3(st, tex1)); } vec4 color = mat_ambient * (gl_LightModel.ambient + gl_LightSource[0].ambient); // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. vec3 n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(n); NdotL = dot(n, lightDir); if (NdotL > 0.0) { float shadowmap = getShadowing(); color += mat_diffuse * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (mat_shininess > 0.0) specular.rgb = (mat_specular.rgb * gl_LightSource[0].specular.rgb * pow(NdotHV, mat_shininess) * shadowmap); } color.a = mat_diffuse.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); fragColor = color * texel + specular; fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb); fragColor.rgb = fog_Func(fragColor.rgb, fogType); gl_FragColor = fragColor; }