# Copyright 2018 Stuart Buchanan # This file is part of FlightGear. # # FlightGear is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # FlightGear is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with FlightGear. If not, see . # # PFDInstruments Controller var PFDInstrumentsController = { CDI_SOURCE : [ "GPS", "NAV1", "NAV2" ], BRG_SOURCE : ["OFF", "NAV1", "NAV2", "GPS", "ADF"], new : func (page, svg) { var obj = { parents : [ PFDInstrumentsController, MFDPageController.new(page) ], _crsrToggle : 0, _pfdrecipient : nil, page : page, _CDISource : 0, _BRG1Source : 0, _BRG2Source : 0, _last_ias_kt : 0, _last_alt_ft : 0, _last_trend : systime(), _selected_alt_ft : 0, _heading_magnetic_deg : 0, _mag_var : 0, _time_sec : 0, _fd_pitch : 0, _fd_roll : 0, _fd_enabled : 0, _ap_enabled : 0, _fp_active : 0, _fp_current_wp : 0, _current_flightplan : nil, _fp_visible : 0, _leg_from :0, _leg_id : "", _leg_bearing : 0, _leg_distance_nm : 0, _leg_deviation_deg : 0, _deflection_dots : 0.0, _leg_xtrk_nm : 0, _leg_valid : 0, _navSelected : 1, _nav1_id : "", _nav1_freq : 0.0, _nav1_radial_deg : 0, _nav1_heading_deg :0.0, _nav1_in_range : 0, _nav1_distance_m :0, _nav1_radial_deg : 0, _nav1_in_range : 0, _nav1_distance_m : 0, _nav1_deviation_deg : 0, _nav1_loc : 0, _nav1_deflection : 0, _nav1_gs_deflection : 0, _nav1_gs_in_range : 0, _nav2_id : "", _nav2_freq : 0.0, _nav2_radial_deg :0, _nav2_heading_deg : 0.0, _nav2_in_range : 0, _nav2_distance_m :0, _nav2_radial_deg : 0, _nav2_in_range : 0, _nav2_distance_m : 0, _nav2_deviation_deg : 0, _nav2_loc : 0, _nav2_deflection : 0, _nav2_gs_deflection : 0, _nav2_gs_in_range : 0, _adf_freq : 0.0, _adf_in_range : 0, _adf_heading_deg : 0.0, _transponder_mode : 0, _transponder_ident : 0, _transponder_edit : 0, # If we're currently editing the transponder code _transponder_edit_code : 0, # Current value being edited as transponder code _transponder_vfr_code : 1200, # Standard VFR code _marker_beacon_outer : 0, _marker_beacon_middle : 0, _marker_beacon_inner : 0, }; obj._transponder_code = page.mfd.ConfigStore.get("TransponderVFRCode"); obj._current_flightplan = obj.getNavData("Flightplan"); if (obj._current_flightplan != nil) { obj._fp_current_wp = obj._current_flightplan.current; obj.page.setFlightPlan(obj._current_flightplan); } # Timer used to reset a transponder IDENT obj.transponderIdentResetTimer = maketimer(18, obj, func() { me.sendNavComDataNotification({"TransponderIdent" : 0}); }); obj.transponderIdentResetTimer.simulatedTime = 1; obj.transponderIdentResetTimer.singleShot = 1; # Timer used to reset a transponder edit, if pilot hasn't completed entering a new code in 45s. obj.transponderEditResetTimer = maketimer(45, obj, obj.transponderEditCancel); obj.transponderEditResetTimer.simulatedTime = 1; obj.transponderEditResetTimer.singleShot = 1; return obj; }, # Input Handling handleRange : func(val) { if (val >0) { me.page.insetMap.zoomOut(); } else { me.page.insetMap.zoomIn(); } return emesary.Transmitter.ReceiptStatus_Finished; }, handleFPL : func (value) { # Display/hide the FPL display me._fp_visible = (! me._fp_visible); me.page.setFlightPlanVisible(me._fp_active and me._fp_visible); return emesary.Transmitter.ReceiptStatus_Finished; }, # Set the STD BARO to 29.92 in Hg setStdBaro : func() { var data = {}; data["FMSPressureSettingInHG"] = 29.92; var notification = notifications.PFDEventNotification.new( "MFD", me._page.mfd.getDeviceID(), notifications.PFDEventNotification.FMSData, data); me.transmitter.NotifyAll(notification); }, incrCDISource : func() { me._CDISource = math.mod(me._CDISource + 1, size(PFDInstrumentsController.CDI_SOURCE)); var src = PFDInstrumentsController.CDI_SOURCE[me._CDISource]; # Indicate the change for CDI source to the autopilot var data = {}; data["AutopilotNAVSource"] = src; var notification = notifications.PFDEventNotification.new( "MFD", me._page.mfd.getDeviceID(), notifications.PFDEventNotification.FMSData, data); me.transmitter.NotifyAll(notification); # If we're changing to NAV1 or NAV2, we also change the selected NAV. if ((src == "NAV1") or (src == "NAV2")) { var data = {}; data["NavSelected"] = (src == "NAV1") ? 1 : 2; var notification = notifications.PFDEventNotification.new( "MFD", me._page.mfd.getDeviceID(), notifications.PFDEventNotification.NavComData, data); me.transmitter.NotifyAll(notification); } me.page.setCDISource(src); }, getCDISource : func() { return PFDInstrumentsController.CDI_SOURCE[me._CDISource]; }, incrBRG1 : func() { me._BRG1Source = math.mod(me._BRG1Source + 1, size(PFDInstrumentsController.BRG_SOURCE)); me.page.setBRG1(PFDInstrumentsController.BRG_SOURCE[me._BRG1Source]); }, incrBRG2 : func() { me._BRG2Source = math.mod(me._BRG2Source + 1, size(PFDInstrumentsController.BRG_SOURCE)); me.page.setBRG2(PFDInstrumentsController.BRG_SOURCE[me._BRG2Source]); }, getBRG1 : func() { return PFDInstrumentsController.BRG_SOURCE[me._BRG1Source]; }, getBRG2 : func() { return PFDInstrumentsController.BRG_SOURCE[me._BRG2Source]; }, # Handle update of the airdata information. # ADC data is produced periodically as an entire set handleADCData : func(data) { var ias = data["ADCIndicatedAirspeed"]; var alt = data["ADCAltitudeFT"]; # estimated speed and altitude in 6s var now = systime(); var lookahead_ias_6sec = 6 * (ias - me._last_ias_kt) / (now - me._last_trend); var lookahead_alt_6sec = .3 * (alt - me._last_alt_ft) / (now - me._last_trend); # scale = 1/20ft me.page.updateIAS(ias, lookahead_ias_6sec); me.page.updateALT(alt, lookahead_alt_6sec, me._selected_alt_ft); me._last_ias_kt = ias; me._last_alt_ft = alt; me._last_trend = now; var pitch = data["ADCPitchDeg"]; var roll = data["ADCRollDeg"]; var slip = data["ADCSlipSkid"]; me.page.updateAI(pitch, roll, slip); me.page.updateFD((me._fd_enabled or me._ap_enabled), pitch, roll, me._fd_pitch, me._fd_roll); me.page.updateVSI(data["ADCVerticalSpeedFPM"]); me.page.updateTAS(data["ADCTrueAirspeed"]); me.page.updateBARO(data["ADCPressureSettingInHG"]); me.page.updateOAT(data["ADCOutsideAirTemperatureC"]); me.page.updateHSI(data["ADCHeadingMagneticDeg"]); me._heading_magnetic_deg = data["ADCHeadingMagneticDeg"]; me._mag_var = data["ADCMagneticVariationDeg"]; # If we're "flying" at < 10kts, then we won't have sufficient delta between # airspeed and groundspeed to determine wind me.page.updateWindData( hdg : data["ADCHeadingMagneticDeg"], wind_hdg : data["ADCWindHeadingDeg"], wind_spd : data ["ADCWindSpeedKt"], no_data: (data["ADCIndicatedAirspeed"] < 1.0) ); if ((data["ADCTimeLocalSec"] != nil) and (me._time_sec != data["ADCTimeLocalSec"])) { me._time_sec = data["ADCTimeLocalSec"]; me.page.updateTime(me._time_sec); } return emesary.Transmitter.ReceiptStatus_OK; }, # Handle update to the FMS information. Note that there is no guarantee # that the entire set of FMS data will be available. handleFMSData : func(data) { if (data["FMSHeadingBug"] != nil) me.page.updateHDG(data["FMSHeadingBug"]); if (data["FMSSelectedAlt"] != nil) { me.page.updateSelectedALT(data["FMSSelectedAlt"]); me._selected_alt_ft = data["FMSSelectedAlt"]; } if (data["FMSLegValid"] != nil) me._leg_valid = data["FMSLegValid"]; if (me._navSelected == 1) { if (data["FMSNav1From"] != nil) me._leg_from = data["FMSNav1From"]; } else { if (data["FMSNav2From"] != nil) me._leg_from = data["FMSNav2From"]; } if (data["FMSLegID"] != nil) me._leg_id = data["FMSLegID"]; if (data["FMSLegBearingMagDeg"] != nil) me._leg_bearing = data["FMSLegBearingMagDeg"]; if (data["FMSLegDistanceNM"] != nil) me._leg_distance_nm = data["FMSLegDistanceNM"]; if (data["FMSLegTrackErrorAngle"] != nil) me._leg_deviation_deg = data["FMSLegTrackErrorAngle"]; # TODO: Proper cross-track error based on source and flight phase. if (data["FMSLegCourseError"] != nil) me._deflection_dots = data["FMSLegCourseError"] /2.0; if (data["FMSLegCourseError"] != nil) me._leg_xtrk_nm = data["FMSLegCourseError"]; if (data["AutopilotFDEnabled"] != nil) me._fd_enabled = data["AutopilotFDEnabled"]; if (data["AutopilotEnabled"] != nil) me._ap_enabled = data["AutopilotEnabled"]; if (data["AutopilotTargetPitch"] != nil) me._fd_pitch = data["AutopilotTargetPitch"]; if (data["AutopilotTargetRoll"] != nil) me._fd_roll = data["AutopilotTargetRoll"]; if (data["AutopilotTargetSpeed"] != nil) { me._fd_spd = data["AutopilotTargetSpeed"]; me.page.updateSelectedSPD(me._fd_spd); } if (data["AutopilotAltitudeMode"] != nil) me.page.setSelectedSPDVisible(data["AutopilotAltitudeMode"] == "FLC"); var update_fp = 0; if (data["FMSFlightPlanEdited"] != nil) { # The flightplan has changed in some way, so reload it. me._current_flightplan = me.getNavData("Flightplan"); if (me._current_flightplan != nil) { me._fp_current_wp = me._current_flightplan.current; me.page.setFlightPlan(me._current_flightplan); update_fp = 1; } } if ((data["FMSFlightPlanActive"] != nil) and (data["FMSFlightPlanActive"] != me._fp_active)) { me._fp_active = data["FMSFlightPlanActive"]; me.page.setFlightPlanVisible(me._fp_active and me._fp_visible); update_fp = 1; } if ((data["FMSFlightPlanCurrentWP"] != nil) and (data["FMSFlightPlanCurrentWP"] != me._fp_current_wp)) { me._fp_current_wp = data["FMSFlightPlanCurrentWP"]; update_fp = 1; } if (me._fp_visible and update_fp and me._fp_active) { me.page.updateFlightPlan(me._fp_current_wp); } if (me.getCDISource() == "GPS") { if (me._leg_valid == 0) { # No valid leg data, likely because there's no GPS course set me.page.updateCRS(0); me.page.updateCDI( heading: me._heading_magnetic_deg, course: 0, waypoint_valid: 0, course_deviation_deg : 0, deflection_dots : 0.0, xtrk_nm : 0, from: 0, annun: "NO DATA", loc : 0, ); } else { me.page.updateCRS(me._leg_bearing); me.page.updateCDI( heading: me._heading_magnetic_deg, course: me._leg_bearing, waypoint_valid: me._leg_valid, course_deviation_deg : me._leg_deviation_deg, deflection_dots : me._deflection_dots, xtrk_nm : me._leg_xtrk_nm, from: me._leg_from, annun: "ENR", loc: 0, ); } } # Update the bearing indicators with GPS data if that's what we're displaying. if (me.getBRG1() == "GPS") me.page.updateBRG1(me._leg_valid, me._leg_id, me._leg_distance_nm, me._heading_magnetic_deg, me._leg_bearing); if (me.getBRG2() == "GPS") me.page.updateBRG2(me._leg_valid, me._leg_id, me._leg_distance_nm, me._heading_magnetic_deg, me._leg_bearing); return emesary.Transmitter.ReceiptStatus_OK; }, # Handle update of the NavCom data. # Note that this updated on a property by property basis, so we need to check # that the data we want exists in this notification, unlike the periodic # publishers handleNavComData : func(data) { if (data["NavSelected"] != nil) me._navSelected = data["NavSelected"]; if (data["Nav1SelectedFreq"] != nil) me._nav1_freq = data["Nav1SelectedFreq"]; if (data["Nav1ID"] != nil) me._nav1_id = data["Nav1ID"]; if (data["Nav1HeadingDeg"] != nil) me._nav1_heading_deg = data["Nav1HeadingDeg"]; if (data["Nav1RadialDeg"] != nil) me._nav1_radial_deg = data["Nav1RadialDeg"]; if (data["Nav1InRange"] != nil) me._nav1_in_range = data["Nav1InRange"]; if (data["Nav1DistanceMeters"] != nil) me._nav1_distance_m = data["Nav1DistanceMeters"]; if (data["Nav1CourseDeviationDeg"] != nil) me._nav1_deviation_deg = data["Nav1CourseDeviationDeg"]; # Deflection range is [-1,1], while deflection_dots is [-2.4, 2.4]; if (data["Nav1Deflection"] != nil) me._nav1_deflection = data["Nav1Deflection"] * 2.4; if (data["Nav1GSDeflection"] != nil) me._nav1_gs_deflection = data["Nav1GSDeflection"]; if (data["Nav1GSInRange"] != nil) me._nav1_gs_in_range = data["Nav1GSInRange"]; if (data["Nav1CrosstrackErrorM"] != nil) me._nav1_crosstrack_m = data["Nav1CrosstrackErrorM"]; if (data["Nav1From"] != nil) me._nav1_from = data["Nav1From"]; if (data["Nav1Localizer"] != nil) me._nav1_loc = data["Nav1Localizer"]; if (data["Nav2SelectedFreq"] != nil) me._nav2_freq = data["Nav2SelectedFreq"]; if (data["Nav2ID"] != nil) me._nav2_id = data["Nav2ID"]; if (data["Nav2HeadingDeg"] != nil) me._nav2_heading_deg = data["Nav2HeadingDeg"]; if (data["Nav2RadialDeg"] != nil) me._nav2_radial_deg = data["Nav2RadialDeg"]; if (data["Nav2InRange"] != nil) me._nav2_in_range = data["Nav2InRange"]; if (data["Nav2DistanceMeters"] != nil) me._nav2_distance_m = data["Nav2DistanceMeters"]; if (data["Nav2CourseDeviationDeg"] != nil) me._nav2_deviation_deg = data["Nav1CourseDeviationDeg"]; # Deflection range is [-1,1], while deflection_dots is [-2.4, 2.4]; if (data["Nav2Deflection"] != nil) me._nav2_deflection = data["Nav2Deflection"] * 2.4; if (data["Nav2GSDeflection"] != nil) me._nav2_gs_deflection = data["Nav2GSDeflection"]; if (data["Nav2GSInRange"] != nil) me._nav2_gs_in_range = data["Nav2GSInRange"]; if (data["Nav2CrosstrackErrorM"] != nil) me._nav2_crosstrack_m = data["Nav2CrosstrackErrorM"]; if (data["Nav2From"] != nil) me._nav2_from = data["Nav2From"]; if (data["Nav2Localizer"] != nil) me._nav2_loc = data["Nav2Localizer"]; if (data["ADFSelectedFreq"] != nil) me._adf_freq = data["ADFSelectedFreq"]; if (data["ADFInRange"] != nil) me._adf_in_range = data["ADFInRange"]; if (data["ADFHeadingDeg"] !=nil) me._adf_heading_deg = data["ADFHeadingDeg"]; if (data["TransponderMode"] != nil) me._transponder_mode = data["TransponderMode"]; if (data["TransponderCode"] != nil) me._transponder_code = data["TransponderCode"]; if (data["TransponderIdent"] != nil) me._transponder_ident = data["TransponderIdent"]; if (data["TransponderVFRCode"] != nil) me._transponder_vfr_code = data["TransponderVFRCode"]; if (data["MarkerBeaconInner"] != nil) me._marker_beacon_inner = data["MarkerBeaconInner"]; if (data["MarkerBeaconMiddle"] != nil) me._marker_beacon_middle = data["MarkerBeaconMiddle"]; if (data["MarkerBeaconOuter"] != nil) me._marker_beacon_outer = data["MarkerBeaconOuter"]; if (me.getBRG1() == "NAV1") me.page.updateBRG1(me._nav1_in_range, me._nav1_id, me._nav1_distance_m * M2NM, me._heading_magnetic_deg, me._nav1_heading_deg); if (me.getBRG1() == "NAV2") me.page.updateBRG1(me._nav2_in_range, me._nav2_id, me._nav2_distance_m * M2NM, me._heading_magnetic_deg, me._nav2_heading_deg); if (me.getBRG1() == "ADF") me.page.updateBRG1(me._adf_in_range, sprintf("%.1f", me._adf_freq), 0, 0, me._adf_heading_deg); if (me.getBRG2() == "NAV1") me.page.updateBRG2(me._nav1_in_range, me._nav1_id, me._nav1_distance_m * M2NM, me._heading_magnetic_deg, me._nav1_heading_deg); if (me.getBRG2() == "NAV2") me.page.updateBRG2(me._nav2_in_range, me._nav2_id, me._nav2_distance_m * M2NM, me._heading_magnetic_deg, me._nav2_heading_deg); if (me.getBRG2() == "ADF") me.page.updateBRG2(me._adf_in_range, sprintf("%.1f", me._adf_freq), 0, 0, me._adf_heading_deg); if (me.getCDISource() == "NAV1") { me.page.updateCRS(me._nav1_radial_deg); me.page.updateCDI( heading: me._heading_magnetic_deg, course: me._nav1_radial_deg, waypoint_valid: me._nav1_in_range, course_deviation_deg : me._nav1_deviation_deg, deflection_dots : me._nav1_deflection, xtrk_nm : me._nav1_crosstrack_m * M2NM, from: me._nav1_from, annun: "", loc : me._nav1_loc, ); if (me._nav1_gs_in_range) { me.page.updateGS(me._nav1_gs_deflection, "G"); } else { me.page.updateGS(0, ""); } } if (me.getCDISource() == "NAV2") { me.page.updateCRS(me._nav2_radial_deg); me.page.updateCDI( heading: me._heading_magnetic_deg, course: me._nav2_radial_deg, waypoint_valid: me._nav2_in_range, course_deviation_deg : me._nav2_deviation_deg, deflection_dots : me._nav2_deflection, xtrk_nm : me._nav2_crosstrack_m * M2NM, from: me._nav2_from, annun: "", loc : me._nav2_loc, ); if (me._nav2_gs_in_range) { me.page.updateGS(me._nav2_gs_deflection, "G"); } else { me.page.updateGS(0, ""); } } # Special case - if the GPS is being used as the CDI source, then it'll be slaved to Nav1 # and we should used the Nav1 Glideslope to show GPS-controlled glideslope. if (me.getCDISource() == "GPS") { if (me._nav1_gs_in_range) { me.page.updateGS(me._nav1_gs_deflection, "G"); } else { me.page.updateGS(0, ""); } } if ((me._transponder_edit == 0) and ((data["TransponderMode"] != nil) or (data["TransponderCode"] != nil) or (data["TransponderIdent"] != nil))) { # Transponder settings only change irregularly, so only redisplay on a change, and only if we are not currently # editing the transponder code itself. me.page.updateTransponder(me._transponder_mode, me._transponder_code, me._transponder_ident); } if (me._marker_beacon_outer == 1) { me.page.setOMI("O"); } else if (me._marker_beacon_middle == 1) { me.page.setOMI("M"); } else if (me._marker_beacon_inner == 1) { me.page.setOMI("I"); } else { me.page.setOMI(""); } return emesary.Transmitter.ReceiptStatus_OK; }, getNavData : func(type, value=nil) { # Use Emesary to get a piece from the NavData system, using the provided # type and value; var notification = notifications.PFDEventNotification.new( "MFD", me._page.mfd.getDeviceID(), notifications.PFDEventNotification.NavData, {Id: type, Value: value}); var response = me._transmitter.NotifyAll(notification); if (! me._transmitter.IsFailed(response)) { return notification.EventParameter.Value; } else { return nil; } }, PFDRegisterWithEmesary : func(transmitter = nil){ if (transmitter == nil) transmitter = emesary.GlobalTransmitter; if (me._pfdrecipient == nil){ me._pfdrecipient = emesary.Recipient.new("PFDInstrumentsController_" ~ me._page.device.designation); var pfd_obj = me._page.device; var controller = me; me._pfdrecipient.Receive = func(notification) { if (notification.NotificationType == notifications.PFDEventNotification.DefaultType and notification.Event_Id == notifications.PFDEventNotification.ADCData and notification.EventParameter != nil) { return controller.handleADCData(notification.EventParameter); } if (notification.NotificationType == notifications.PFDEventNotification.DefaultType and notification.Event_Id == notifications.PFDEventNotification.FMSData and notification.EventParameter != nil) { return controller.handleFMSData(notification.EventParameter); } if (notification.NotificationType == notifications.PFDEventNotification.DefaultType and notification.Event_Id == notifications.PFDEventNotification.NavComData and notification.EventParameter != nil) { return controller.handleNavComData(notification.EventParameter); } return emesary.Transmitter.ReceiptStatus_NotProcessed; }; } transmitter.Register(me._pfdrecipient); me.transmitter = transmitter; }, PFDDeRegisterWithEmesary : func(transmitter = nil){ # remove registration from transmitter; but keep the recipient once it is created. if (me.transmitter != nil) me.transmitter.DeRegister(me._pfdrecipient); me.transmitter = nil; }, setTransponderMode : func(mode) { var idx = -1; # Find the matching index for the transponder mode string for(var i = 0; i < size(TRANSPONDER_MODES); i +=1) { if (mode == TRANSPONDER_MODES[i]) { idx = i; break; } } if (idx == -1) { print("Unable to find transponder mode " ~ mode); } else { me.sendNavComDataNotification({"TransponderMode" : idx}); } }, setVFRTransponderCode : func() { me.sendNavComDataNotification({"TransponderCode" : me._transponder_vfr_code}); }, setTransponderCode : func(code) { me.sendNavComDataNotification({"TransponderCode" : code}); }, setTransponderIdent : func(ident) { # IDNT is active for 18 seconds, so we set a timer to reset it. me.sendNavComDataNotification({"TransponderIdent" : ident}); # Reset any edit of the transponder code. Note that this also returns # to the top level menu. This is correct behaviour. me.transponderEditCancel(); if (ident == 1) { me.transponderIdentResetTimer.restart(18); } }, setTransponderDigit : func(digit) { if (me._transponder_edit == 0) { # If this is the first time we've pressed a digit button, then go to editing # mode, and set the first digit of the display me._transponder_edit = 1; # Start the transponder edit timer so we will exit out of edit mode me.transponderEditResetTimer.restart(45); if (digit == "BKSP") { me._transponder_edit_code = ""; } else { me._transponder_edit_code = digit; } me.page.updateTransponder(me._transponder_mode, me._transponder_edit_code, me._transponder_ident, 1); } else { # Already in edit mode, so we need to append the newly entered number. if (digit == "BKSP") { # Trim off the last digit me._transponder_edit_code = substr(me._transponder_edit_code, 0, size(me._transponder_edit_code) -1); } else { # append the new digit me._transponder_edit_code = me._transponder_edit_code ~ digit; } if (size(me._transponder_edit_code) == 4) { # We've now got 4 digits, so set it both centrally and locally me.sendNavComDataNotification({"TransponderCode" : me._transponder_edit_code}); me._transponder_code = me._transponder_edit_code; me.transponderEditCancel(); } else { # Display the code so far entered. me.page.updateTransponder(me._transponder_mode, me._transponder_edit_code, me._transponder_ident, 1); } } }, transponderEditCancel : func() { me._transponder_edit = 0; me.transponderEditResetTimer.stop(); me.page.updateTransponder(me._transponder_mode, me._transponder_code, me._transponder_ident); me.page.topMenu(me.page.device, me.page, nil); }, # Helper function to notify the Emesary bridge of a NavComData update. sendNavComDataNotification : func(data) { var notification = notifications.PFDEventNotification.new( "MFD", me._page.mfd.getDeviceID(), notifications.PFDEventNotification.NavComData, data); me.transmitter.NotifyAll(notification); }, # Reset controller if required when the page is displayed or hidden ondisplay : func() { me.RegisterWithEmesary(); me.PFDRegisterWithEmesary(); }, offdisplay : func() { me.DeRegisterWithEmesary(); me.PFDDeRegisterWithEmesary(); }, };