// -*-C++-*- varying vec2 rawPos; varying vec3 vertPos; varying vec3 normal; varying vec3 refl_vec; varying vec3 light_diffuse; varying float splash_angle; varying float Mie; varying float ambient_fraction; uniform sampler2D texture; uniform sampler2D frost_texture; uniform sampler2D func_texture; uniform samplerCube cube_texture; uniform vec4 tint; uniform vec3 overlay_color; uniform float rain_norm; uniform float ground_splash_norm; uniform float frost_level; uniform float fog_level; uniform float reflection_strength; uniform float overlay_alpha; uniform float splash_x; uniform float splash_y; uniform float splash_z; uniform float osg_SimulationTime; uniform int use_reflection; uniform int use_mask; uniform int use_wipers; uniform int use_overlay; float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density); float DropletNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density); float Noise2D(in vec2 coord, in float wavelength); void main() { vec4 texel; vec4 frost_texel; vec4 func_texel; texel = texture2D(texture, gl_TexCoord[0].st); texel *=gl_Color; frost_texel = texture2D(frost_texture, vertPos.xy * 7.0); func_texel = texture2D(func_texture, gl_TexCoord[0].st); //func_texel = texture2D(func_texture, vertPos.xy * 3.0); float noise_003m = Noise2D(vertPos.xy, 0.03); float noise_0003m = Noise2D(vertPos.xy, 0.003); // environment reflection vec4 reflection = textureCube(cube_texture, refl_vec); if (use_reflection ==1) { // to determine whether what we see reflected is currently in light, we make the somewhat drastic // assumption that its normal will be opposite to the glass normal // (which is mostly truish in a normal cockpit) float reflection_shade = ambient_fraction + (1.0-ambient_fraction) * max(0.0, dot (normalize(normal), normalize(gl_LightSource[0].position.xyz))); texel.rgb = mix(texel.rgb, reflection.rgb, reflection_strength * reflection_shade * (1.0-Mie)); } // overlay pattern if ((use_mask == 1) && (use_overlay==1)) { vec4 overlay_texel = vec4(overlay_color, overlay_alpha); overlay_texel.rgb *= light_diffuse.rgb* (1.0 + 1.5*Mie); overlay_texel.a *=(1.0 + 0.5* Mie); texel = mix(texel, overlay_texel, func_texel.b * overlay_texel.a); } // frost float fth = (1.0-frost_level) * 0.4 + 0.3; float fbl = 0.2 * frost_level; float frost_factor = (fbl + (1.0-fbl)* smoothstep(fth,fth+0.2,noise_003m)) * (4.0 + 4.0* Mie); float background_frost = 0.5 * smoothstep(0.7,1.0,frost_level); frost_texel.rgb = mix(frost_texel.rgb, vec3 (0.5,0.5,0.5), (1.0- smoothstep(0.0,0.02,frost_texel.a))); frost_texel.a =max(frost_texel.a, background_frost * (1.0- smoothstep(0.0,0.02,frost_texel.a))); frost_texel *= vec4(light_diffuse.rgb,0.5) * (1.0 + 3.0 * Mie); frost_factor = max(frost_factor, 0.8*background_frost); texel.rgb = mix(texel.rgb, frost_texel.rgb, frost_texel.a * frost_factor * smoothstep(0.0,0.1,frost_level)); texel.a = max(texel.a, frost_texel.a * frost_level); // rain splashes vec3 splash_vec = vec3 (splash_x, splash_y, splash_z); float splash_speed = length(splash_vec); float rain_factor = 0.0; float rnorm = max(rain_norm, ground_splash_norm); if (rnorm > 0.0) { float droplet_size = (0.5 + 0.8 * rnorm) * (1.0 - 0.1 * splash_speed); vec2 rainPos = vec2 (rawPos.x * splash_speed, rawPos.y / splash_speed ); rainPos.y = rainPos.y - 0.1 * smoothstep(1.0,2.0, splash_speed) * osg_SimulationTime; if (splash_angle> 0.0) { // the dynamically impacting raindrops float time_shape = 1.0; float base_rate = 6.0 + 3.0 * rnorm + 4.0 * (splash_speed - 1.0); float base_density = 0.6 * rnorm + 0.4 * (splash_speed -1.0); if ((use_mask ==1)&&(use_wipers==1)) {base_density *= (1.0 - 0.5 * func_texel.g);} float time_fact1 = (sin(base_rate*osg_SimulationTime)); float time_fact2 = (sin(base_rate*osg_SimulationTime + 1.570)); float time_fact3 = (sin(base_rate*osg_SimulationTime + 3.1415)); float time_fact4 = (sin(base_rate*osg_SimulationTime + 4.712)); time_fact1 = smoothstep(0.0,1.0, time_fact1); time_fact2 = smoothstep(0.0,1.0, time_fact2); time_fact3 = smoothstep(0.0,1.0, time_fact3); time_fact4 = smoothstep(0.0,1.0, time_fact4); rain_factor += DotNoise2D(rawPos.xy, 0.02 * droplet_size ,0.5, base_density ) * time_fact1; rain_factor += DotNoise2D(rainPos.xy, 0.03 * droplet_size,0.4, base_density) * time_fact2; rain_factor += DotNoise2D(rawPos.xy, 0.04 * droplet_size ,0.3, base_density)* time_fact3; rain_factor += DotNoise2D(rainPos.xy, 0.05 * droplet_size ,0.25, base_density)* time_fact4; } // the static pattern of small droplets created by the splashes float sweep = min(1./splash_speed,1.0); if ((use_mask ==1)&&(use_wipers==1)) {sweep *= (1.0 - func_texel.g);} rain_factor += DropletNoise2D(rainPos.xy, 0.02 * droplet_size ,0.5, 0.6* rnorm * sweep); rain_factor += DotNoise2D(rainPos.xy, 0.012 * droplet_size ,0.7, 0.6* rnorm * sweep); } rain_factor = smoothstep(0.1,0.2, rain_factor) * (1.0 - smoothstep(0.4,1.0, rain_factor) * (0.2+0.8*noise_0003m)); vec4 rainColor = vec4 (0.2,0.2, 0.2, 0.6 - 0.3 * smoothstep(1.0,2.0, splash_speed)); rainColor.rgb *= length(light_diffuse)/1.73; // glass tint vec4 outerColor = mix(texel, rainColor, rain_factor); outerColor *= tint; // fogging - this is inside the glass vec4 fog_texel = vec4 (0.6,0.6,0.6, fog_level); if (use_mask == 1) {fog_texel.a = fog_texel.a * func_texel.r;} fog_texel *= vec4(light_diffuse.rgb,1.0); fog_texel.rgb *= (1.0 + 3.0 * Mie); fog_texel.a *= min((1.0 + 0.5 * Mie), 0.85); vec4 fragColor; fragColor.rgb = mix(outerColor.rgb, fog_texel.rgb, fog_texel.a); fragColor.a = max(outerColor.a, fog_texel.a); gl_FragColor = clamp(fragColor,0.0,1.0); //gl_FragColor = func_texel; }