# These classes provide basic functions for use in aircraft specific
# Nasal context. Note that even if a class is called "door" or "light"
# this doesn't mean that it can't be used for other purposes.
#
# Class instances don't have to be assigned to variables. They do also
# work if they remain anonymous. It's even a good idea to keep them
# anonymous if you don't need further access to their members. On the
# other hand, you can assign the class and apply setters at the same time:
#
#   aircraft.light.new("sim/model/foo/beacon", [1, 1]);    # anonymous
#   var strobe = aircraft.light.new("sim/model/foo/strobe", [1, 1]).cont().switch(1);
#
#
# Classes do create properties, but they don't usually overwrite the contents
# of an existing property. This makes it possible to preset them in
# a *-set.xml file or on the command line. For example:
#
#   $ fgfs --aircraft=bo105 --prop:/controls/doors/door[0]/position-norm=1
#
#
# Wherever a property argument can be given, this can either be a path,
# or a node (i.e. property node hash). In return, the property node can
# always be accessed directly as member "node", and turned into a path
# string with node.getPath():
#
#   var beacon = aircraft.light.new("sim/model/foo/beacon", [1, 1]);
#   print(beacon.node.getPath());
#
#   var strobe_node = props.globals.getNode("sim/model/foo/strobe", 1);
#   var strobe = aircraft.light.new(strobe_node, [0.05, 1.0]);
#
#
# The classes implement only commonly used features, but are easy to
# extend, as all class members are accessible from outside. For example:
#
#   # add custom property to door node:
#   frontdoor.node.getNode("name", 1).setValue("front door");
#
#   # add method to class instance (or base class -> aircraft.door.print)
#   frontdoor.print = func { print(me.position.getValue()) };
#
#


# helper functions
# ==============================================================================

# creates (if necessary) and returns a property node from arg[0],
# which can be a property node already, or a property path
#
var makeNode = func(n) {
	if (isa(n, props.Node))
		return n;
	else
		return props.globals.getNode(n, 1);
}


# returns arg[1]-th optional argument of vector arg[0] or default value arg[2]
#
var optarg = func {
	if (size(arg[0]) > arg[1] and arg[0][arg[1]] != nil)
		arg[0][arg[1]];
	else
		arg[2];
}




# door
# ==============================================================================
# class for objects moving at constant speed, with the ability to
# reverse moving direction at any point. Appropriate for doors, canopies, etc.
#
# SYNOPSIS:
#	door.new(<property>, <swingtime> [, <startpos>]);
#
#	property   ... door node: property path or node
#	swingtime  ... time in seconds for full movement (0 -> 1)
#	startpos   ... initial position      (default: 0)
#
# PROPERTIES:
#	./position-norm   (double)     (default: <startpos>)
#	./enabled         (bool)       (default: 1)
#
# EXAMPLE:
#	var canopy = aircraft.door.new("sim/model/foo/canopy", 5);
#	canopy.open();
#
var door = {
	new : func {
		m = { parents : [door] };
		m.node = makeNode(arg[0]);
		m.swingtime = arg[1];
		m.positionN = m.node.getNode("position-norm", 1);
		m.enabledN = m.node.getNode("enabled", 1);
		if (m.enabledN.getValue() == nil)
			m.enabledN.setBoolValue(1);

		pos = optarg(arg, 2, 0);
		if (m.positionN.getValue() == nil)
			m.positionN.setDoubleValue(pos);

		m.target = pos < 0.5;
		return m;
	},
	# door.enable(bool)    ->  set ./enabled
	enable  : func { me.enabledN.setBoolValue(arg[0]); me },

	# door.setpos(double)  ->  set ./position-norm without movement
	setpos  : func { me.positionN.setValue(arg[0]); me.target = arg[0] < 0.5; me },

	# double door.getpos() ->  return current position as double
	getpos  : func { me.positionN.getValue() },

	# door.close()         ->  move to closed state
	close   : func { me.move(me.target = 0) },

	# door.open()          ->  move to open state
	open    : func { me.move(me.target = 1) },

	# door.toggle()        ->  move to opposite end position
	toggle  : func { me.move(me.target) },

	# door.stop()          ->  stop movement
	stop    : func { interpolate(me.positionN) },

	# door.move(double)    ->  move to arbitrary position
	move    : func {
		time = abs(me.getpos() - arg[0]) * me.swingtime;
		interpolate(me.positionN, arg[0], time);
		me.target = !me.target;
	},
};



# light
# ==============================================================================
# class for generation of pulsing values. Appropriate for controlling
# beacons, strobes, etc.
#
# SYNOPSIS:
#	light.new(<property>, <pattern> [, <switch>]);
#	light.new(<property>, <stretch>, <pattern> [, <switch>]);
#
#	property   ... light node: property path or node
#	stretch    ... multiplicator for all pattern values
#	pattern    ... array of on/off time intervals (in seconds)
#	switch     ... property path or node to use as switch   (default: ./enabled)
#                      instead of ./enabled
#
# PROPERTIES:
#	./state           (bool)   (default: 0)
#	./enabled         (bool)   (default: 0) except if <switch> given)
#
# EXAMPLES:
#	aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]);    # anonymous light
#-------
#	var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1],
#	                "controls/lighting/strobe");
#	strobe.switch(1);
#-------
#	var switch = props.globals.getNode("controls/lighting/strobe", 1);
#	var pattern = [0.02, 0.03, 0.02, 1];
#	aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, switch);
#	aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, switch);
#
var light = {
	new : func {
		m = { parents : [light] };
		m.node = makeNode(arg[0]);
		var stretch = 1.0;
		var c = 1;
		if (typeof(arg[c]) == "scalar") {
			stretch = arg[c];
			c += 1;
		}
		if (typeof(arg[c]) != "vector") {
			die("aircraft.nas: the arguments of aircraft.light.new() have changed!\n" ~
					"  *** BEFORE: aircraft.light.new(property, 0.1, 0.9, switch)\n" ~
					"  ***    NOW: aircraft.light.new(property, [0.1, 0.9], switch)");
		}
		m.pattern = arg[c];
		c += 1;
		if (size(arg) > c and arg[c] != nil)
			m.switchN = makeNode(arg[c]);
		else
			m.switchN = m.node.getNode("enabled", 1);

		if (m.switchN.getValue() == nil)
			m.switchN.setBoolValue(0);

		m.stateN = m.node.getNode("state", 1);
		if (m.stateN.getValue() == nil)
			m.stateN.setBoolValue(0);

		forindex (var i; m.pattern)
			m.pattern[i] *= stretch;

		m.index = 0;
		m.loopid = 0;
		m.continuous = 0;
		m.lastswitch = 0;
		m.seqcount = -1;
		m.endstate = 0;
		m.count = nil;
		m.switchL = setlistener(m.switchN, func { m._switch_() }, 1);
		return m;
	},
	# class destructor
	del : func {
		removelistener(me.switchL);
	},
	# light.switch(bool)   ->  set light switch (also affects other lights
	#                          that use the same switch)
	switch : func(v) { me.switchN.setBoolValue(v); me },

	# light.toggle()       ->  toggle light switch
	toggle : func { me.switchN.setBoolValue(!me.switchN.getValue()); me },

	# light.cont()         ->  continuous light
	cont : func {
		if (!me.continuous) {
			me.continuous = 1;
			me.loopid += 1;
			me.stateN.setBoolValue(me.lastswitch);
		}
		me;
	},

	# light.blink()        ->  blinking light  (default)
	# light.blink(3)       ->  when switched on, only run three blink sequences;
	#                          second optional arg defines state after the sequences
	blink : func(count = -1, endstate = 0) {
		me.seqcount = count;
		me.endstate = endstate;
		if (me.continuous) {
			me.continuous = 0;
			me.index = 0;
			me.stateN.setBoolValue(0);
			me.lastswitch and me._loop_(me.loopid += 1);
		}
		me;
	},

	_switch_ : func {
		var switch = me.switchN.getBoolValue();
		switch != me.lastswitch or return;
		me.lastswitch = switch;
		me.loopid += 1;
		if (me.continuous or !switch) {
			me.stateN.setBoolValue(switch);
		} elsif (switch) {
			me.stateN.setBoolValue(0);
			me.index = 0;
			me.count = me.seqcount;
			me._loop_(me.loopid);
		}
	},

	_loop_ : func(id) {
		id == me.loopid or return;
		if (!me.count) {
			me.loopid += 1;
			me.stateN.setBoolValue(me.endstate);
			return;
		}
		me.stateN.setBoolValue(me.index == 2 * int(me.index / 2));
		settimer(func { me._loop_(id) }, me.pattern[me.index]);
		if ((me.index += 1) >= size(me.pattern)) {
			me.index = 0;
			if (me.count > 0)
				me.count -= 1;
		}
	},
};



# lowpass
# ==============================================================================
# class that implements a variable-interval EWMA (Exponentially Weighted
# Moving Average) lowpass filter with characteristics independent of the
# frame rate.
#
# SYNOPSIS:
#	lowpass.new(<coefficient>);
#
# EXAMPLE:
#	var lp = aircraft.lowpass.new(0.5);
#	print(lp.filter(10));  # prints 10
#	print(lp.filter(0));
#
var lowpass = {
	new : func(coeff) {
		var m = { parents : [lowpass] };
		m.dtN = props.globals.getNode("/sim/time/delta-realtime-sec", 1);
		m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0");
		m.value = nil;
		return m;
	},
	# filter(raw_value)    -> push new value, returns filtered value
	filter : func(v) {
		me.filter = me._filter_;
		me.value = v;
	},
	# get()                -> returns filtered value
	get : func {
		me.value;
	},
	# set()                -> sets new average and returns it
	set : func(v) {
		me.value = v;
	},
	_filter_ : func(v) {
		var dt = me.dtN.getValue();
		var c = dt / (me.coeff + dt);
		me.value = v * c + me.value * (1 - c);
	},
};



# Data
# ==============================================================================
# class that loads and saves properties to aircraft-specific data files in
# ~/.fgfs/aircraft-data/ (Unix) or %APPDATA%\flightgear.org\aircraft-data\.
# There's no public constructor, as the only needed instance gets created
# by the system.
#
# SYNOPSIS:
#	data.add(<properties>);
#	data.save([<interval>])
#
#	properties  ... about any combination of property nodes (props.Node)
#	                or path name strings, or lists or hashes of them,
#	                lists of lists of them, etc.
#	interval    ... save in <interval> minutes intervals, or only once
#	                if 'nil' or empty (and again at reinit/exit)
#
# SIGNALS:
#	/sim/signals/save   ... set to 'true' right before saving. Can be used
#	                        to update values that are to be saved
#
# EXAMPLE:
#	var p = props.globals.getNode("/sim/model", 1);
#	var vec = [p, p];
#	var hash = {"foo": p, "bar": p};
#
#	# add properties
#	aircraft.data.add("/sim/fg-root", p, "/sim/fg-home");
#	aircraft.data.add(p, vec, hash, "/sim/fg-root");
#
#	# now save only once (and at exit/reinit, which is automatically done)
#	aircraft.data.save();
#
#	# or save now and every 30 sec (and at exit/reinit)
#	aircraft.data.save(0.5);
#
var data = {
	init : func {
		me.path = getprop("/sim/fg-home") ~ "/aircraft-data/" ~ getprop("/sim/aircraft") ~ ".xml";
		me.signalN = props.globals.getNode("/sim/signals/save", 1);
		me.catalog = [];
		me.loopid = 0;
		me.interval = 0;

		setlistener("/sim/signals/reinit", func { cmdarg().getBoolValue() and me._save_() });
		setlistener("/sim/signals/exit", func { me._save_() });
	},
	load : func {
		printlog("warn", "trying to load aircraft data from ", me.path, " (OK if not found)");
		fgcommand("load", props.Node.new({ "file": me.path }));
	},
	save : func(v = nil) {
		me.loopid += 1;
		if (v == nil) {
			me._save_();
		} else {
			me.interval = 60 * v;
			me._loop_(me.loopid);
		}
	},
	_loop_ : func(id) {
		id == me.loopid or return;
		me._save_();
		settimer(func { me._loop_(id) }, me.interval);
	},
	_save_ : func {
		size(me.catalog) or return;
		printlog("info", "saving aircraft data to ", me.path);
		me.signalN.setBoolValue(1);
		var args = props.Node.new({ "filename": me.path });
		var data = args.getNode("data", 1);
		foreach (var c; me.catalog) {
			if (c[0] == `/`)
				c = substr(c, 1);

			props.copy(props.globals.getNode(c, 1), data.getNode(c, 1));
		}
		fgcommand("savexml", args);
	},
	add : func {
		foreach (var a; arg) {
			var t = typeof(a);
			if (isa(a, props.Node)) {
				append(me.catalog, a.getPath());
			} elsif (t == "scalar") {
				append(me.catalog, a);
			} elsif (t == "vector") {
				foreach (var i; a)
					me.add(i);
			} elsif (t == "hash") {
				foreach (var i; keys(a))
					me.add(a[i]);
			} else {
				die("aircraft.data.add(): invalid item of type " ~ t);
			}
		}
	},
};


# timer
# ==============================================================================
# class that implements timer that can be started, stopped, reset, and can
# have its value saved to the aircraft specific data file. Saving the value
# is done automatically by the aircraft.Data class.
#
# SYNOPSIS:
#	timer.new(<property> [, <resolution:double> [, <save:bool>]])
#
#	<property>   ... property path or props.Node hash that holds the timer value
#	<resolution> ... timer update resolution -- interval in seconds in which the
#	                 timer property is updated while running (default: 1 s)
#	<save>       ... bool that defines whether the timer value should be saved
#	                 and restored next time, as needed for Hobbs meters
#	                 (default: 1)
#
# EXAMPLES:
#	var hobbs_turbine = aircraft.timer.new("/sim/time/hobbs/turbine[0]", 60);
#	hobbs_turbine.start();
#	
#	aircraft.timer.new("/sim/time/hobbs/battery", 60).start();  # anonymous timer
#
var timer = {
	new : func(prop, res = 1, save = 1) {
		var m = { parents : [timer] };
		m.node = makeNode(prop);
		if (m.node.getType() == "NONE")
			m.node.setDoubleValue(0);

		m.systimeN = props.globals.getNode("/sim/time/elapsed-sec", 1);
		m.last_systime = nil;
		m.interval = res;
		m.loopid = 0;
		m.running = 0;
		if (save) {
			data.add(m.node);
			m.saveL = setlistener("/sim/signals/save", func { m._save_() });
		} else {
			m.saveL = nil;
		}
		return m;
	},
	del : func {
		me.stop();
		if (me.saveL != nil)
			removelistener(me.saveL);
	},
	start : func {
		me.running and return;
		me.last_systime = me.systimeN.getValue();
		me.interval != nil and me._loop_(me.loopid);
		me.running = 1;
		me;
	},
	stop : func {
		me.running or return;
		me.running = 0;
		me.loopid += 1;
		me._apply_();
	},
	reset : func {
		me.node.setDoubleValue(0);
		me.last_systime = me.systimeN.getValue();
	},
	_apply_ : func {
		var sys = me.systimeN.getValue();
		me.node.setDoubleValue(me.node.getValue() + sys - me.last_systime);
		me.last_systime = sys;
	},
	_save_ : func {
		if (me.running)
			me._apply_();
	},
	_loop_ : func(id) {
		id != me.loopid and return;
		me._apply_();
		settimer(func { me._loop_(id) }, me.interval);
	},
};



# livery
# =============================================================================
# Class that maintains livery XML files (see English Electric Lightning for an
# example). The last used livery is saved on exit and restored next time. Livery
# files are regular PropertyList XML files whose properties are copied to the
# main tree (whereby the node types are ignored).
#
# SYNOPSIS:
#	livery.init(<livery-dir> [, <name-path> [, <sort-path>]]);
#
#	<livery-dir> ... directory with livery XML files, relative to $FG_ROOT
#	<name-path>  ... property path to the livery name in the livery files
#	                 and the property tree (default: /sim/model/livery/name)
#	<sort-path>  ... property path to the sort criterion (default: same as
#	                 <name-path> -- that is: alphabetic sorting)
#
# EXAMPLE:
#	aircraft.livery.init("Aircraft/Lightning/Models/Liveries",
#	                     "sim/model/livery/variant",
#	                     "sim/model/livery/index");  # optional
#
#	aircraft.livery.dialog.toggle();
#	aircraft.livery.select("OEBH");
#	aircraft.livery.next();
#
var livery = {
	init : func(livery_dir, name_path = "sim/model/livery/name", sort_path = nil) {
		me.dir = livery_dir;
		if (me.dir[-1] != `/`)
			me.dir ~= "/";
		me.name_path = name_path;
		me.sort_path = sort_path != nil ? sort_path : name_path;
		me.rescan();
		aircraft.data.add(name_path);
		me.dialog = gui.Dialog.new("livery-select");
	},
	rescan : func {
		me.data = [];
		var path = getprop("/sim/fg-root") ~ "/" ~ me.dir;
		foreach (var file; directory(path)) {
			if (substr(file, -4) != ".xml")
				continue;
			var n = props.Node.new({ filename : path ~ file });
			fgcommand("loadxml", n);
			n = n.getNode("data");

			var name = n.getNode(me.name_path);
			var index = n.getNode(me.sort_path);
			if (name == nil or index == nil)
				continue;

			append(me.data, [name.getValue(), index.getValue(), n.getValues()]);
		}
		me.data = sort(me.data, func(a, b) {
			num(a[1]) == nil or num(b[1]) == nil ? cmp(a[1], b[1]) : a[1] - b[1];
		});
		me.select(getprop(me.name_path));
	},
	# select by index (out-of-bounds indices are wrapped)
	set : func(i) {
		if (i < 0)
			i = size(me.data - 1);
		if (i >= size(me.data))
			i = 0;
		props.globals.setValues(me.data[i][2]);
		me.current = i;
	},
	# select by name
	select : func(name) {
		forindex (var i; me.data)
			if (me.data[i][0] == name)
				me.set(i);
	},
	next : func {
		me.set(me.current + 1);
	},
	previous : func {
		me.set(me.current - 1);
	},
};



# steering
# =============================================================================
# Class that implements differential braking depending on rudder position.
# Note that this overrides the controls.applyBrakes() wrapper. If you need
# your own version, then override it again after the steering.init() call.
#
# SYNOPSIS:
#	steering.init([<property> [, <threshold>]]);
#
#	<property>  ... property path or props.Node hash that enables/disables
#	                brake steering (usually bound to the js trigger button)
#	<threshold> ... defines range (+- threshold) around neutral rudder
#	                position in which both brakes are applied
#
# EXAMPLES:
#	aircraft.steering.init("/controls/gear/steering", 0.2);
#	aircraft.steering.init();
#
var steering = {
	init : func(switch = "/controls/gear/brake-steering", threshold = 0.3) {
		me.threshold = threshold;
		me.switchN = makeNode(switch);
		me.switchN.setBoolValue(me.switchN.getBoolValue());
		me.leftN = props.globals.getNode("/controls/gear/brake-left", 1);
		me.rightN = props.globals.getNode("/controls/gear/brake-right", 1);
		me.rudderN = props.globals.getNode("/controls/flight/rudder", 1);
		me.loopid = 0;

		controls.applyBrakes = func(v, w = 0) {
			call(func(v, w) (w < 0 ? leftN : w > 0 ? rightN : switchN).setValue(v),
					[v, w], nil, aircraft.steering);
		}
		setlistener(me.switchN, func {
			me.loopid += 1;
			if (cmdarg().getValue())
				me._loop_(me.loopid);
			else
				me.setbrakes(0, 0);
		}, 1);
	},
	_loop_ : func(id) {
		id == me.loopid or return;
		var rudder = me.rudderN.getValue();
		if (rudder > me.threshold)
			me.setbrakes(0, rudder);
		elsif (rudder < -me.threshold)
			me.setbrakes(-rudder, 0);
		else
			me.setbrakes(1, 1);

		settimer(func { me._loop_(id) }, 0);
	},
	setbrakes : func(left, right) {
		me.leftN.setDoubleValue(left);
		me.rightN.setDoubleValue(right);
	},
};



# autotrim
# =============================================================================
# Singleton class that supports quick trimming and compensates for the lack
# of resistance/force feedback in most joysticks. Normally the pilot trims such
# that no real or artificially generated (by means of servo motors and spring
# preloading) forces act on the stick/yoke and it is in a comfortable position.
# This doesn't work well on computer joysticks.
#
# SYNOPSIS:
#	autotrim.start();  # on key/button press
#	autotrim.stop();   # on key/button release (mod-up)
#
# USAGE:
#	(1) move the stick such that the aircraft is in an orientation that
#	    you want to trim for (forward flight, hover, ...)
#	(2) press autotrim button and keep it pressed
#	(3) move stick/yoke to neutral position (center)
#	(4) release autotrim button
#
var autotrim = {
	init : func {
		me.elevator = me.Trim.new("elevator");
		me.aileron = me.Trim.new("aileron");
		me.rudder = me.Trim.new("rudder");
		me.loopid = 0;
		me.active = 0;
	},
	start : func {
		me.active and return;
		me.active = 1;
		me.elevator.start();
		me.aileron.start();
		me.rudder.start();
		me._loop_(me.loopid += 1);
	},
	stop : func {
		me.active or return;
		me.active = 0;
		me.loopid += 1;
		me.update();
	},
	_loop_ : func(id) {
		id == me.loopid or return;
		me.update();
		settimer(func { me._loop_(id) }, 0);
	},
	update : func {
		me.elevator.update();
		me.aileron.update();
		me.rudder.update();
	},
	Trim : {
		new : func(name) {
			var m = { parents : [ autotrim.Trim ] };
			m.trimN = props.globals.getNode("/controls/flight/" ~ name ~ "-trim", 1);
			m.ctrlN = props.globals.getNode("/controls/flight/" ~ name, 1);
			return m;
		},
		start : func {
			me.last = me.ctrlN.getValue();
		},
		update : func {
			var v = me.ctrlN.getValue();
			me.trimN.setDoubleValue(me.trimN.getValue() + me.last - v);
			me.last = v;
		},
	},
};



# HUD control class to handle both HUD implementations
# ==============================================================================
#
var HUD = {
	init : func {
		me.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1);
		me.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1);
		me.currcolN = props.globals.getNode("/sim/hud/current-color", 1);
		me.paletteN = props.globals.getNode("/sim/hud/palette", 1);
		me.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1);
		me.currentN = me.vis0N;
	},
	cycle_color : func {		# h-key
		if (!me.currentN.getBoolValue())		# if off, turn on
			return me.currentN.setBoolValue(1);

		var i = me.currcolN.getValue() + 1;		# if through, turn off
		if (i < 0 or i >= size(me.paletteN.getChildren("color"))) {
			me.currentN.setBoolValue(0);
			me.currcolN.setIntValue(0);
		} else {					# otherwise change color
			me.currentN.setBoolValue(1);
			me.currcolN.setIntValue(i);
		}
	},
	cycle_brightness : func {	# H-key
		me.is_active() or return;
		var br = me.brightnessN.getValue() - 0.2;
		me.brightnessN.setValue(br > 0.01 ? br : 1);
	},
	normal_type : func {		# i-key
		me.is_active() or return;
		me.oldinit1();
		me.vis0N.setBoolValue(1);
		me.vis1N.setBoolValue(0);
		me.currentN = me.vis0N;
	},
	cycle_type : func {		# I-key
		me.is_active() or return;
		if (me.currentN == me.vis0N) {
			me.vis0N.setBoolValue(0);
			me.vis1N.setBoolValue(1);
			me.currentN = me.vis1N;
		} elsif (me.currentN == me.vis1N) {
			me.vis0N.setBoolValue(1);
			me.vis1N.setBoolValue(0);
			me.oldinit2();
			me.currentN = me.vis0N;
		}
	},
	oldinit1 : func { fgcommand("hud-init") },
	oldinit2 : func { fgcommand("hud-init2") },
	is_active : func { me.vis0N.getValue() or me.vis1N.getValue() },
};



# module initialization
# ==============================================================================
#

_setlistener("/sim/signals/nasal-dir-initialized", func {

	props.globals.getNode("/sim/time/delta-realtime-sec", 1).setDoubleValue(0.00000001);
	HUD.init();
	data.init();
	autotrim.init();

	if (getprop("/sim/startup/save-on-exit")) {
		data.load();
		var n = props.globals.getNode("/sim/aircraft-data");
		if (n != nil)
			foreach (var c; n.getChildren("path"))
				if (c.getType() != "NONE")
					data.add(c.getValue());
	} else {
		data._save_ = func {}
		data._loop_ = func {}
	}
});