# # Flight Control System for Helicopters by Tatsuhiro Nishioka # $Id$ # var enableDebug = func() { setprop("/controls/flight/fcs/switches/debug", 1); } var debugEnabled = func() { var debugStatus = getprop("/controls/flight/fcs/switches/debug"); if (debugStatus == 1) { return 1; } else { return 0; } } var dumpParameters = func() { debug.dump(props.globals.getNode("/controls/flight/fcs/gains").getValues()); } # # FCSFilter - base class for FCS components like CAS and SAS # var FCSFilter = { # # new - constructor # input_path: a property path for a filter input # nil is equivalent to "/controls/flight/" # output_path: a property path for a filter output # new : func(input_path, output_path) { var obj = { parents : [FCSFilter], input_path : input_path, output_path : output_path }; obj.axis_conv = {'roll' : 'aileron', 'pitch' : 'elevator', 'yaw' : 'rudder' }; obj.body_conv = {'roll' : 'v', 'pitch' : 'u' }; obj.last_body_fps = {'roll' : 0.0, 'pitch' : 0.0 }; obj.last_pos = {'roll' : 0.0, 'pitch' : 0.0, 'yaw' : 0.0}; return obj; }, # # updateSensitivities: read sensitivitiy values for all axis from the property # updateSensitivities : func() { me.sensitivities = props.globals.getNode("/controls/flight/fcs/gains/sensitivities").getValues(); }, # # read - gets input command for a given axis from input_path # read : func(axis) { if (me.input_path == nil or me.input_path == "") { return getprop("/controls/flight/" ~ me.axis_conv[axis]); } else { var value = getprop(me.input_path ~ "/" ~ axis); value = int(value * 1000) / 1000.0; } }, # # write - outputs command for a given axis into output_path # this will be the output of an next command filter (like SAS) # write : func(axis, value) { if (me.output_path == nil or me.output_path == '') { setprop("/controls/flight/fcs/" ~ axis, me.limit(value, 1.0)); } else { setprop(me.output_path ~ "/" ~ axis, me.limit(value, 1.0)); } }, # # toggleFilterStatus - toggles engage/disengage FCS function # name: FCS filter name; one of /controls/flight/fcs/switches/* # toggleFilterStatus : func(name) { var messages = ["disengaged", "engaged"]; var path = "/controls/flight/fcs/switches/" ~ name; var status = getprop(path); setprop(path, 1 - status); screen.log.write(name ~ " " ~ messages[1 - status]); }, # # getStatus - returns 1 if a given function is engaged # name: FCS filter name; one of /controls/flight/fcs/switches/* # getStatus : func(name) { var path = "/controls/flight/fcs/switches/" ~ name; return getprop(path); }, # # limit - cut out a given value between +range to -range # value: number to be adjusted # range: absolute number for specifying the range limit : func(value, range) { if (value > range) { return range; } elsif (value < -range) { return - range; } return value; }, max : func(val1, val2) { return (val1 > val2) ? val1 : val2; }, min : func(val1, val2) { return (val1 > val2) ? val2 : val1; }, # # calcCounterBodyFPS - calculates counter-force command to kill movement in each axis # axis: one of 'roll', 'pitch', or 'yaw' # input: input (0.0 - 1.0) for a given axis # offset_deg: # calcCounterBodyFPS : func(axis, input, offset_deg) { var position = getprop("/orientation/" ~ axis ~ "-deg"); var body_fps = 0; var last_body_fps = me.last_body_fps[axis]; var reaction_gain = 0; var heading = getprop("/orientation/heading-deg"); var wind_speed_fps = getprop("/environment/wind-speed-kt") * 1.6878099; var wind_direction = getprop("/environment/wind-from-heading-deg"); var wind_direction -= heading; var rate = getprop("/orientation/" ~ axis ~ "-rate-degps"); var gear_pos = getprop("/gear/gear[0]/compression-norm") + getprop("/gear/gear[1]/compression-norm"); var counter_fps = 0; var fps_axis = me.body_conv[axis]; # convert from {roll, pitch} to {u, v} var target_pos = offset_deg; var brake_deg = 0; body_fps = getprop("/velocities/" ~ fps_axis ~ "Body-fps"); if (axis == 'roll') { var wind_fps = math.sin(wind_direction / 180 * math.pi) * wind_speed_fps; } else { var wind_fps = math.cos(wind_direction / 180 * math.pi) * wind_speed_fps; } var brake_freq = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-brake-freq"); var brake_gain = getprop("/controls/flight/fcs/gains/afcs/fps-brake-gain-" ~ axis); body_fps -= wind_fps; var dfps = body_fps - me.last_body_fps[axis]; var fps_coeff = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-coeff"); target_pos -= int(body_fps * 100) / 100 * fps_coeff; if (axis == 'roll' and gear_pos > 0.0 and position > 0) { target_pos -= position * gear_pos / 5; } reaction_gain = getprop("/controls/flight/fcs/gains/afcs/fps-reaction-gain-" ~ axis); var brake_sensitivity = (axis == 'roll') ? 1 : 1; if (math.abs(position + rate / brake_freq * brake_sensitivity) > math.abs(target_pos)) { if (math.abs(dfps) > 1) { dfps = 1; } var error_deg = target_pos - position; brake_deg = (error_deg - rate / brake_freq) * math.abs(dfps * 10) * brake_gain; if (target_pos > 0) { brake_deg = me.min(brake_deg, 0); } else { brake_deg = me.max(brake_deg, 0); } } counter_fps = me.limit((target_pos + brake_deg) * reaction_gain, 1.0); if (debugEnabled() == 1) { setprop("/controls/flight/fcs/afcs/status/ah-" ~ fps_axis ~ "body-fps", body_fps); setprop("/controls/flight/fcs/afcs/status/ah-" ~ fps_axis ~ "body-wind-fps", wind_fps); setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-target-deg", target_pos); setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-rate", rate); setprop("/controls/flight/fcs/afcs/status/ah-delta-" ~ fps_axis ~ "body-fps", dfps); setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-brake-deg", brake_deg); setprop("/controls/flight/fcs/afcs/status/counter-fps-" ~ axis, counter_fps); } me.last_pos[axis] = position; me.last_body_fps[axis] = body_fps; return me.limit(counter_fps + input * 0.2, 1.0); }, }; # # AFCS - Automatic Flight Control System # var AFCS = { new : func(input_path, output_path) { var obj = FCSFilter.new(input_path, output_path); obj.parents = [FCSFilter, AFCS]; return obj; }, # # toggle* - I/F methods for Instruments # toggleAutoHover : func() { me.toggleFilterStatus("auto-hover"); }, toggleAirSpeedLock : func() { me.toggleFilterStatus("air-speed-lock"); }, toggleHeadingLock : func() { me.toggleFilterStatus("heading-lock"); }, toggleAltitudeLock : func() { me.toggleFilterStatus("altitude-lock"); }, # # auto hover - locks vBody_fps and uBody_fps regardless of wind speed/direction # autoHover : func(axis, input) { if (axis == 'yaw') { return input; } else { var offset_deg = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-offset-deg"); return me.calcCounterBodyFPS(axis, input, offset_deg); } }, altitudeLock : func(axis, input) { # not implemented yet return input; }, headingLock : func(axis, input) { # not implementet yet return input; }, # # applying all AFCS functions # only auto hover is available at this moment # apply : func(axis) { var input = me.read(axis); var hover_status = me.getStatus("auto-hover"); if (hover_status == 0) { me.write(axis, input); return; } me.write(axis, me.autoHover(axis, input)); } }; # # SAS : Stability Augmentation System - a rate damper # var SAS = { # # new # input_path: is a base path to input axis; nil for using raw input from KB/JS # output_path: is a base path to output axis; nis for using /controls/flight/fcs # with input_path / output_path, you can connect SAS, CAS, and more control filters # new : func(input_path, output_path) { var obj = FCSFilter.new(input_path, output_path); obj.parents = [FCSFilter, SAS]; return obj; }, toggleEnable : func() { me.toggleFilterStatus("sas"); }, # # calcGain - get gain for each axis based on air speed and dynamic pressure # axis: one of 'roll', 'pitch', or 'yaw' # calcGain : func(axis) { var mach = getprop("/velocities/mach"); var initial_gain = getprop("/controls/flight/fcs/gains/sas/" ~ axis); var gain = initial_gain - 0.1 * mach * mach; if (math.abs(gain) < math.abs(initial_gain) * 0.01 or gain * initial_gain < 0) { gain = initial_gain * 0.01; } return gain; }, # # calcAuthorityLimit - returns SAS authority limit using a given limit and mach number # calcAuthorityLimit : func() { var mach = getprop("/velocities/mach"); var min_mach = 0.038; me.authority_limit = getprop("/controls/flight/fcs/gains/sas/authority-limit"); var limit = me.authority_limit; if (math.abs(mach < min_mach)) { limit += (min_mach - math.abs(mach)) / min_mach * (1 - me.authority_limit) * 0.95; } if (debugEnabled() == 1) { setprop("/controls/flight/fcs/sas/status/authority-limit", limit); } return limit; }, # # apply - apply SAS damper to a given input axis # axis: one of 'roll', 'pitch', or 'yaw' # apply : func(axis) { me.updateSensitivities(); var status = me.getStatus("sas"); var input = me.read(axis); if (status == 0) { me.write(axis, input); return; } var mach = getprop("/velocities/mach"); var value = 0; var rate = getprop("/orientation/" ~ axis ~ "-rate-degps"); var gain = me.calcGain(axis); var limit = me.calcAuthorityLimit(); if (math.abs(rate) >= me.sensitivities[axis]) { value = - gain * rate; if (value > limit) { value = limit; } elsif (value < - limit) { value = - limit; } } me.write(axis, value + input); } }; # # CAS : Control Augmentation System - makes your aircraft more meneuverable # var CAS = { new : func(input_path, output_path) { var obj = FCSFilter.new(input_path, output_path); obj.parents = [FCSFilter, CAS]; setprop("/autopilot/locks/altitude", ''); setprop("/autopilot/locks/heading", ''); obj.setCASControlThresholds(); return obj; }, calcRollRateAdjustment : func { var position = getprop("/orientation/roll-deg"); return math.abs(math.sin(position / 180 * math.pi)) / 6; }, # # calcHeadingAdjustment - returns roll axis output for stabilizing heading # calcHeadingAdjustment : func { if (getprop("/controls/flight/fcs/switches/heading-adjuster") == 1) { var gain = getprop("/controls/flight/fcs/gains/cas/output/heading-adjuster-gain"); var yaw_rate = getprop("/orientation/yaw-rate-degps"); var limit = getprop("/controls/flight/fcs/gains/cas/output/heading-adjuster-limit"); var adjuster = yaw_rate * gain; return me.limit(adjuster, limit); } else { return 0; } }, # # calcSideSlipAdjustment - returns yaw axis output for preventing side slip # calcSideSlipAdjustment : func { if (getprop("/controls/flight/fcs/switches/sideslip-adjuster") == 0) { return 0; } var mach = getprop("/velocities/mach"); var slip = getprop("/orientation/side-slip-deg"); var min_speed_threshold = getprop("/controls/flight/fcs/gains/cas/input/anti-side-slip-min-speed"); if (mach < min_speed_threshold) { # works only if air speed > min_speed_threshold slip = 0; } var anti_slip_gain = getprop("/controls/flight/fcs/gains/cas/output/anti-side-slip-gain"); var roll_deg = getprop("/orientation/roll-deg"); var gain_adjuster = me.min(math.abs(mach) / 0.060, 1) * me.limit(0.2 + math.sqrt(math.abs(roll_deg)/10), 3); anti_slip_gain *= gain_adjuster; if (debugEnabled() == 1) { setprop("/controls/flight/fcs/cas/status/anti-side-slip", slip * anti_slip_gain); } return slip * anti_slip_gain; }, # # isInverted - returns 1 if aircraft is inverted (roll > 90 or roll < -90) # isInverted : func() { var roll_deg = getprop("/orientation/roll-deg"); if (roll_deg > 90 or roll_deg < -90) return 1; else return 0; }, # FIXME: command for CAS is just a temporal one # # calcCommand - returns CAS output for each axis # calcCommand: func (axis, input) { var output = 0; var mach = getprop("/velocities/mach"); var input_gain = me.calcGain(axis); var output_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis); var target_rate = input * input_gain; var rate = getprop("/orientation/" ~ axis ~ "-rate-degps"); var drate = target_rate - rate; if (axis == 'pitch' and me.isInverted() == 1) { drate = - drate; } var attitudeControlThreshold = getprop("/controls/flight/fcs/gains/cas/input/attitude-control-threshold"); var rateControlThreshold = getprop("/controls/flight/fcs/gains/cas/input/rate-control-threshold"); var locks = {'pitch' : getprop("/autopilot/locks/altitude"), 'roll' : getprop("/autopilot/locks/heading")}; setprop("/controls/flight/fcs/cas/target_" ~ axis ~ "rate", target_rate); setprop("/controls/flight/fcs/cas/delta_" ~ axis, drate); if (axis == 'roll' or axis == 'pitch') { if (math.abs(input) > rateControlThreshold) { return input; } elsif (math.abs(input) > attitudeControlThreshold or locks[axis] != '') { output = drate * output_gain; } else { output = me.calcAttitudeCommand(axis); } if (axis == 'roll' and math.abs(mach) < 0.035) { # FIXME: I don't know if OH-1 has this one output += me.calcCounterBodyFPS(axis, input, -0.8); } } elsif (axis == 'yaw') { if (getprop("/controls/flight/fcs/switches/tail-rotor-adjuster") == 0) { output = input; } else { output = drate * output_gain + me.calcSideSlipAdjustment(); } } else { output = drate * output_gain; } return output; }, toggleEnable : func() { me.toggleFilterStatus("cas"); }, # # toggle enable / disable attitude control # you can make similar function that changes parameters # in attitude-control-limit and rate-control-limit # at controls/flight/fcs/gains/cas/input # CAS changes its behavior when roll/pitch axis inputs reaches each limit. # e.g. when attitude-control-limit is 0.7 and rate-control-limit is 0.9, # giving 0.6 for roll holds bank angle, 0.8 keeps roll rate, # and 1.0 makes roll at maximum roll rate. # Sets of initial values for these limits are stored at # controls/fcs/gains/cas/{attitude,rate} # toggleAttitudeControl : func() { me.toggleFilterStatus("attitude-control"); me.setCASControlThresholds(); }, setCASControlThresholds : func() { if (me.getStatus("attitude-control") == 1) { var params = props.globals.getNode("controls/flight/fcs/gains/cas/control/attitude").getValues(); props.globals.getNode("controls/flight/fcs/gains/cas/input").setValues(params); } else { var params = props.globals.getNode("controls/flight/fcs/gains/cas/control/rate").getValues(); props.globals.getNode("controls/flight/fcs/gains/cas/input").setValues(params); } }, # # calcAttitudeCommand - Attitude base Augmentation output for roll and pitch axis # axis: either 'roll' or 'pitch' # calcAttitudeCommand : func(axis) { var input_gain = getprop("/controls/flight/fcs/gains/cas/input/attitude-" ~ axis); var output_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis); var brake_freq = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis ~ "-brake-freq"); var brake_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis ~ "-brake"); var trim = getprop("/controls/flight/" ~ me.axis_conv[axis] ~ "-trim"); var current_deg = getprop("/orientation/" ~ axis ~ "-deg"); var rate = getprop("/orientation/" ~ axis ~ "-rate-degps"); var target_deg = (me.read(axis) + trim) * input_gain; if (axis == 'roll' and math.abs(target_deg) < 0.1) { # rolls a bit to counteract the heading changes only if target roll rate = 0 target_deg += me.calcHeadingAdjustment(); } var command_deg = 0; if (target_deg != 0) { command_deg = (0.094 * math.ln(math.abs(target_deg)) + 0.53) * target_deg; } var error_deg = command_deg - current_deg; if (axis == 'pitch' and me.isInverted() == 1) { error_deg = - error_deg; } var brake_deg = (error_deg - rate / brake_freq) * math.abs(error_deg) * brake_gain; if (command_deg > 0) { brake_deg = me.min(brake_deg, 0); } else { brake_deg = me.max(brake_deg, 0); } if (debugEnabled() == 1) { var monitor_prefix = me.output_path ~ "/status/" ~ axis; setprop(monitor_prefix ~ "-target_deg", target_deg); setprop(monitor_prefix ~ "-error_deg", error_deg); setprop(monitor_prefix ~ "-brake_deg", brake_deg); setprop(monitor_prefix ~ "-deg", current_deg); setprop(monitor_prefix ~ "-rate", -rate); } return (error_deg + brake_deg) * output_gain; }, # # calcGain - returns gain for a given axis using a given gain and speed # FixMe: gain should be calculated using both speed and dynamic pressure # calcGain : func(axis) { var mach = getprop("/velocities/mach"); var input_gain = getprop("/controls/flight/fcs/gains/cas/input/" ~ axis); var gain = input_gain; if (axis == 'pitch') { gain += 0.1 * mach * mach; } elsif (axis== 'yaw') { gain *= ((1 - mach) * (1 - mach)); } if (gain * input_gain < 0.0 ) { gain = 0; } if (debugEnabled() == 1) { setprop("/controls/flight/fcs/cas/gain-" ~ axis, gain); } return gain; }, # # apply - public method that outputs CAS command for a given axis to output_path # input is read from input_path # axis: one of 'roll', 'pitch', or 'yaw' # apply : func(axis) { me.updateSensitivities(); var input = me.read(axis); var status = me.getStatus("cas"); var cas_command = 0; # FIXME : hmm, a bit nasty. CAS should be enabled even with auto-hover.... if (status == 0 or (me.getStatus("auto-hover") == 1 and axis != 'yaw')) { me.write(axis, input); return; } cas_command = me.calcCommand(axis, input); me.write(axis, cas_command); } }; # # Tail hstab, "stabilator," for stabilize the nose # var Stabilator = { new : func() { var obj = { parents : [Stabilator] }; me.gainTable = props.globals.getNode("/controls/flight/fcs/gains/stabilator").getChildren('gain-table'); return obj; }, toggleEnable : func { var status = getprop("/controls/flight/fcs/switches/auto-stabilator"); getprop("/controls/flight/fcs/switches/auto-stabilator", 1 - status); }, # # calcPosition - returns stabilator position (output) depending on # predefined gain table and mach number # calcPosition : func() { var speed = getprop("/velocities/mach") / 0.001497219; # in knot var index = int(math.abs(speed) / 10); if (index >= size(me.gainTable) - 1) { index = size(me.gainTable) - 2; } var gain = me.gainTable[index].getValue(); var gainAmb = me.gainTable[index-1].getValue(); var mod = math.mod(int(math.abs(speed)), 10); var position = gain * ((10 - mod) / 10) + gainAmb * mod / 10; if (speed < -20) { position = - position; } return position; }, # # apply - public method for Stabilator control # no axis is required since it is only for hstab # apply : func() { var status = getprop("/controls/flight/fcs/switches/auto-stabilator"); if (status == 0) { return; } var gain = getprop("/controls/flight/fcs/gains/stabilator/stabilator-gain"); var mach = getprop("/velocities/mach"); var throttle = getprop("/controls/flight/throttle"); var stabilator_norm = 0; stabilator_norm = me.calcPosition(); setprop("/controls/flight/fcs/stabilator", stabilator_norm); } }; # # Automatic tail rotor adjuster depending on collective/throttle status # var TailRotorCollective = { new : func() { var obj = FCSFilter.new("/controls/engines/engine[1]", "/controls/flight/fcs/tail-rotor"); obj.parents = [FCSFilter, TailRotorCollective]; obj.adjuster = 0.0; return obj; }, # # apply - public method for tail rotor adjuster # no axis is required # apply : func() { var throttle = me.read("throttle"); var pedal_pos_deg = getprop("/controls/flight/fcs/yaw"); var cas_input = cas.read('yaw'); var cas_input_gain = cas.calcGain('yaw'); var target_rate = cas_input * cas_input_gain; var rate = getprop("/orientation/yaw-rate-degps"); var error_rate = getprop("/controls/flight/fcs/cas/delta_yaw"); var error_adjuster_gain = getprop("/controls/flight/fcs/gains/tail-rotor/error-adjuster-gain"); var minimum = getprop("/controls/flight/fcs/gains/tail-rotor/src-minimum"); var maximum = getprop("/controls/flight/fcs/gains/tail-rotor/src-maximum"); var low_limit = getprop("/controls/flight/fcs/gains/tail-rotor/low-limit"); var high_limit = getprop("/controls/flight/fcs/gains/tail-rotor/high-limit"); var authority_limit = getprop("/controls/flight/fcs/gains/tail-rotor/authority-limit"); var output = 0; var range = maximum - minimum; if (throttle < minimum) { output = low_limit; } elsif (throttle > maximum) { output = high_limit; } else { output = low_limit + (throttle - minimum) / range * (high_limit - low_limit); } # CAS driven tail rotor thrust adjuster me.adjuster = error_rate * error_adjuster_gain; me.adjuster = me.limit(me.adjuster, authority_limit); output += me.adjuster; setprop("/controls/flight/fcs/tail-rotor/error-rate", error_rate); setprop("/controls/flight/fcs/tail-rotor/adjuster", me.adjuster); me.write("throttle", output); } }; # Back-up FCS # It automatically disable CAS and shifts to # the backup mode (e.g. SAS only or direct link mode) # var BackupFCS = { new : func() { var obj = { parents : [BackupFCS] }; obj.switches = {'cas' : 0, 'sas' : 1, 'attitude-control' : 0 }; # default backup switches obj.normalSwitches = props.globals.getNode("/controls/flight/fcs/switches").getValues(); setprop("/controls/flight/fcs/failures/manual-backup-mode", 0); setprop("/controls/flight/fcs/switches/backup-mode", 0); return obj; }, # checkFCSFailures - detects FCS failures # returns 1 if failure (or manual backup mode) is detected, 0 otherwise # checkFCSFailures : func() { # not fully implemented yet if (getprop("/controls/flight/fcs/failures/manual-backup-mode") == 1) { return 1; } else { return 0; } }, # # shiftToBackupMode - overwrites switches for force entering backup mode # shiftToBackupMode : func() { if (me.switches != nil) { var switchNode = props.globals.getNode("/controls/flight/fcs/switches"); switchNode.setValues(me.switches); setprop("/controls/flight/fcs/switches/backup-mode", 1); } }, # # shiftToNormalMode - bring switches back to normal mode # switches for normalMode are captured at BackupFCS.new shiftToNormalMode : func() { if (me.normalSwitches != nil) { props.globals.getNode("/controls/flight/fcs/switches").setValues(me.normalSwitches); setprop("/controls/flight/fcs/switches/backup-mode", 0); } }, # # setBackupMode - specifies set of values on FCS switches # switches: hash of FCS switch values that will be set to # controls/flight/fcs/switches on backup mode # only values to be overwritten must be specified # e.g. {'cas' : 0, 'sas' : 1} # setBackupMode : func(switches) { me.switches = switches }, # # update - main I/F for BackupFCS # update : func() { if (me.checkFCSFailures() == 1) { me.shiftToBackupMode(); } elsif (getprop("/controls/flight/fcs/switches/backup-mode") == 1) { me.shiftToNormalMode(); } }, # # toggleBackupMode - I/F for Cockpit Panel # toggleBackupMode : func() { var mode = getprop("/controls/flight/fcs/failures/manual-backup-mode"); setprop("/controls/flight/fcs/failures/manual-backup-mode", 1 - mode); } }; var sas = nil; var cas = nil; var afcs = nil; var stabilator = nil; var tail = nil; var backup = nil; var count = 0; # # AFCS main loop # This runs at 60Hz (on every other update of /rotors/main/cone-deg) # var update = func { count += 1; # AFCS, CAS, and SAS run at 60Hz rpm = getprop("/rotors/main/rpm"); # AFCS, CAS, and SAS run at 60Hz only when engine rpm >= 10 # this rpm filter prevents CAS/SAS work when engine is not running, # which may cause Nasal runtime error if (math.mod(count, 2) == 0 or rpm < 10) { return; } cas.apply('roll'); cas.apply('pitch'); cas.apply('yaw'); afcs.apply('roll'); afcs.apply('pitch'); afcs.apply('yaw'); sas.apply('roll'); sas.apply('pitch'); sas.apply('yaw'); stabilator.apply(); tail.apply(); backup.update(); } # Factory default configuration values # DO NOT CHANGE THESE VALUES.! # You can change some of these values in per-aircraft nasal file. # See Aircraft/OH-1/Nasal/OH1.nas for more detail # var default_fcs_params = { 'gains' : { 'afcs' : { # Auto Hover parameters 'fps-brake-gain-pitch' : 1.8, 'fps-brake-gain-roll' : 0.8, 'fps-pitch-brake-freq' : 3, 'fps-pitch-coeff' : -0.95, 'fps-pitch-offset-deg' : 0.9, 'fps-reaction-gain-pitch' : -0.8, 'fps-reaction-gain-roll' : 0.3436, 'fps-roll-brake-freq' : 8, 'fps-roll-coeff' : 0.8, 'fps-roll-offset-deg' : -0.8 }, 'cas' : { 'input' : { # Input gains for CAS 'roll' : 30, 'pitch' : -60, 'yaw' : 30, 'attitude-roll' : 80, 'attitude-pitch' : -80, 'attitude-control-threshold' : 0.0, # input threshold that CAS changes attitude-base control to rate-base control 'rate-control-threshold' : 0.95, # input threshold that CAS changes rate-base control to doing nothing 'anti-side-slip-min-speed' : 0.015 }, 'output' : { # Output gains for CAS 'roll' : 0.06, 'pitch' : -0.1, 'yaw' : 0.5, 'roll-brake-freq' : 10, 'pitch-brake-freq' : 3, 'roll-brake' : 0.4, 'pitch-brake' : 6, 'anti-side-slip-gain' : -4.5, 'heading-adjuster-gain' : -5, 'heading-adjuster-limit' : 5, }, 'control' : { # configuration for CAS augumentation modes 'attitude' : { # Attitude control augmentation mode (e.g. ATTDAGMT button on OH-1) # Note: attitude-control-threshold must be smaller than rate-control-threshold in any mode 'attitude-control-threshold' : 0.95, # Roll / Pitch attitude(angle) hold mode when 0 < input <= 0.95 'rate-control-threshold' : 1.0 # Rate hold mode when 0.95 < input <= 1.0 }, 'rate' : { # Rate control augmentation mode 'attitude-control-threshold' : 0.0, 'rate-control-threshold' : 0.95 }, } }, 'sas' : { # gains for SAS 'roll' : 0.02, 'pitch' : -0.10, 'yaw' : 0.04, 'authority-limit' : 0.15 # How much SAS will take over pilot's control. 0.15 means 15% }, 'sensitivities' : { 'roll' : 1.0, 'pitch' : 1.0, 'yaw' : 3.0 }, 'tail-rotor' : { # parameters for tail rotor control based on throttle / collective 'src-minimum' : 0.10, # throttle value that outputs low-limit 'src-maximum' : 1.00, # throttle value that outputs high-limit 'low-limit' : 0.00011, 'high-limit' : 0.0035, 'error-adjuster-gain' : -0.5, # gain that how much CAS adjust yaw rate 'authority-limit' : 0.3 }, 'stabilator' : { # gain tables for adjusting either incidence or flap angle of hstab # index is the speed (Kt) devided by 10 # 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160, 170, 180, ..... 'gain-table' : [-0.9, -0.8, 0.1, -0.5, 0.0, 0.7, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.8, 0.6, 0.4, 0.2, -1.0] } }, 'switches' : { # master switches for AFCS, can be controlled by cockpit panel or keys 'auto-hover' : 0, 'cas' : 1, 'sas' : 1, 'attitude-control' : 0, 'auto-stabilator' : 1, 'sideslip-adjuster' : 1, 'tail-rotor-adjuster' : 1, 'heading-adjuster' : 0, 'air-speed-lock' : 0, 'heading-lock' : 0, 'altitude-lock' : 0, } }; # # initialize - creates AFCS components and invokes AFCS main loop # var initialize = func { cas = CAS.new(nil, "/controls/flight/fcs/cas"); afcs = AFCS.new("/controls/flight/fcs/cas", "/controls/flight/fcs/afcs"); sas = SAS.new("/controls/flight/fcs/afcs", "/controls/flight/fcs"); stabilator = Stabilator.new(); tail = TailRotorCollective.new(); backup = BackupFCS.new(); setlistener("/rotors/main/cone-deg", update); } # # Stores default AFCS parameters at startup # var confNode = props.globals.getNode("/controls/flight/fcs", 1); confNode.setValues(default_fcs_params); # # fcs-initialized signal must be set by per-aircraft nasal script # to show that FCS configuration parameters are set # setlistener("/sim/signals/fcs-initialized", initialize);