Flight Gear READMESs

Flight Gear Community
May 16, 2016

Contents

1

8

9

Introduction
3DClouds
Airspeed-indicator
Checklists
Commands
Conditions
Digitalfilters
Effects

Electrical

10 Fgjs

11 Flightrecorder

12 Gui

13 Hud

14 Introduction

10

19

24

36

45

50

51

58

75

86

15 IO 88

16 Joystick 92
17 JSBsim 92
18 Jsclient 93
19 Layout 94
20 Logging 96
21 Materials 98
22 Mingw 105
23 Minipanel 109
24 Multiplayer 109
25 Multiscreen 113
26 Osgtext 121
27 Properties 124
28 Protocol 130
29 Scenery 137
30 Sound 151
31 Submodels 154
32 Systems 159
33 Tutorials 163
34 Wildfire 175
35 Xmlhud 178

36 Xmlpanel
37 Xmlparticles
38 Xmlsound
39 Xmlsyntax

40 Yasim

189

206

213

220

225

1 Introduction

This document is

autogenerated from the various plain text README files

found in the Docs/ directory of your FlightGear installation, presented in

PDF format for e

ase of use. These are targetted at those delving into the

internals of FG, or developing aircraft.
For help running or using FlightGear, please see Docs/getstart.pdf.

2 3DClouds

Configuring 3D Clouds

3D clouds can
- By placing
- Using the g

an XML file

Placing Cloud

be created in two ways:
individual clouds using a command (e.g. from Nasal)
lobal weather function, which reads cloud definition from

s Individually

Clouds are cr
node defining

Location is d

<layer>
<index>

eated using the "add-cloud" command, passing a property
the location and characterstics of the cloud.

efined by the following properties:

- The cloud layer number to add the cloud to. (default 0)
- A unique identifier for the cloud in the layer. If a cloud

already exists with this index, the new cloud will not be
created, and 0 is returned.
<lon-deg> - Longitude to place the cloud, in degrees (default 0)
<lat-deg> Latitude t place the cloud, in degrees (default 0)
<alt-ft> Altitude to place the cloud, relative to the layer (!) in ft
(default 0)
Offset in m from the lon-deg. +ve is south (default 0)
Offset in m from the lat-deg. +ve is east (default 0)

<x-offset-m>
<y-offset-m>

The cloud itself is built up of a number of "sprites" - simple 2D textures
that are always rotated to be facing the viewer. These sprites are handled
by a OpenGL Shader - a small program that is run on your graphics card.

The cloud is defined by the following properties:

<min-cloud-width-m> - minimum width of the cloud in meters (default 500)
<max-cloud-width-m> - maximum width of the cloud (default min-cloud-width-m*1.5)
<min-cloud-height-m> - minimum height of the cloud (default 400)
<max-cloud-height-m> - maximum height of the cloud (default min-cloud-height-m*1.5)

<texture> - texture file of sprites to use (default cl_cumulus.png)

<num-textures-x> - number of cloud textures defined horizontally in the
texture file (default 4)

<num-textures-y> - number of cloud textures defined vertically in the
texture file (default 4)

<height-map-texture> - whether to choose the vertical texture index based on
sprite height within the clouds (default false)

<num-sprites> - Number of sprite to generate for the cloud (default 20)

<min-sprite-width-m> - minimum width of the sprites used to create the cloud
(default 200)

<max-sprite-width-m> - maximum width of the sprites used to create the cloud

(default min-sprite-width-m#*1.5)

<min-sprite-height-m> - minimum height of the spites used to create the cloud
(default 150)

<max-sprite-height-m> - maximum height of the sprites used to create the cloud
(default min-sprite-height-mx*1.5)

<z-scale> - vertical scaling factor to apply to to the sprite after
billboarding. A small value would create a sprite that
looks squashed when viewed from the side. (default 1.0)

<min-bottom-lighting-factor> - See Shading below (default 1.0)

<max-bottom-lighting-factor> - See Shading below (default min-...-factor + 0.1)

<min-middle-lighting-factor> - See Shading below (default 1.0)

<max-middle-lighting-factor> - See Shading below (default min-...-factor + 0.1)
<min-top-lighting-factor> - See Shading below (default 1.0)
<max-top-lighting-factor> - See Shading below (default min-...-factor + 0.1)
<min-shade-lighting-factor> - See Shading below (default 0.5)
<max-shade-lighting-factor> - See Shading below (default min-...-factor + 0.1)
Shading

the [min|max]-...-lighting-factor properties allow you to define diffuse lighting

multipliers to the bottom, middle, top, sunny and shaded parts of the cloud. In
each case, individual clouds will have a random multiplier between the min and
max values used to allow for some variation between individual clouds.

The top, middle and bottom lighting factors are applied based on the pixels vertical
positon in the cloud. A linear interpolation is used either between top/middle (if
the pixel is above the middle of the cloud) or middle/bottom (if the pixel is below
the middle of the cloud).

The top factor is also applied to _all_ pixels on the sunny side of the cloud. The
shade factor is applied based on the pixel position away from the sun, linearly
interpolated from top to shade. E.g this is not a straight linear interpolation
from top to shade across the entire cloud.

The final lighting factor is determined by the minimum of the vertical factor and
the sunny/shade factor. Note that this is applied to the individual pixels, not
sprites.

Textures

The texture to use for the sprites is defined in the <texture> tag.

To allow some variation, you can create a texture file containing multiple
sprites in a grid, and define the <num-textures-x/y> tags. The code

decides which texture to use for a given sprite : randomly in the x-direction
and based on the altitude of the sprite within the cloud in the y-direction
if <height-map-texture> is set. Therefore, you should put sprite textures

you want to use for the bottom of your cloud at the bottom of the texture
file, and those you want to use for the top of the cloud at the top of the

texture file.

For example, the following Nasal snippet will create a cloud immediately above the
aircraft at an altitude of 1000 ft above /environment/clouds/layer[0]/elevation-ft

var p = props.Node.new({ "layer" : O,
"index": 1,
"lat-deg": getprop("/position/latitude-deg"),
"lon-deg": getprop("/position/longitude-deg"),
"alt-ft" : 1000 });

fgcommand ("add-cloud", p);

Moving Individual Clouds

Clouds may be moved by using the "move-cloud" command. This takes the following
property arguments.

<layer> - The cloud layer number containing the cloud to move. (default 0)
<index> - The unique identifier of the cloud to move.

<lon-deg> - Longitude to place the cloud, in degrees (default 0)

<lat-deg> - Latitude t place the cloud, in degrees (default 0)

<alt-ft> - Altitude to place the cloud, relative to the layer (!) in ft

(default 0)
<x-offset-m> - Offset in m from the lon-deg. +ve is south (default 0)
<y-offset-m> - Offset in m from the lat-deg. +ve is east (default 0)

Deleting Individual Clouds

Clouds may be deleted by using the "del-cloud" command. This takes the following
property arguments.

<layer> - The cloud layer number containing the cloud to delete. (default 0)
<index> - The unique identifier of the cloud to delete.

Global 3D Clouds

The global weather system uses sets of clouds defined in

FG_ROOT/Environment/cloudlayers.xml

The file has 3 distinct sections: layers, cloud boxes and clouds,
described below.

Notes for those editing clouds:

- All distances are in m. Note that this is in contrast to cloud heights
in METAR etc. which are in ft.

- The XML file is loaded into the properties system, so you can modify
the settings in-sim, and see the results by re-generating the cloud
layer. The simplest way to do this is to disable METAR, and control
the cloud layers using the Clouds dialog, and in particular the coverage.

- Texture files are in .png format, and have a transparent background.
To make the textures easier to edit, create a black layer behind them,
so there is some contrast between the background and the white cloud.
Having a grid based on the texture dimensions also helps, so you don’t
bleed over the edges, which causes ugly sharp horizontal and vertical
lines.

The cloud definitions are as described above for placing individual
clouds, but no position information is used (this is defined in the
cloud box and layers below).

Cloud Boxes

The <boxes> section contains definitions of groups of cloads,for example
an entire towering CB mass.

The <boxes> section contains a number of named types, which are referenced
by the <layers> section, described below. Therefore, the names used are

completely user-defined.

Each of the named section consists of one or more <box> section,
defining a particular cloud type

Each <box> section contains the following tags:

<type> - The cloud to use, defined above

<count> - The number of clouds to generate (+/- 50%)
<width> - The x and y within which these clouds should be generated
<height> - The height within which the clouds should be generated
<hdist> - The horizontal distribution of the clouds within the area.
Equates to a sum of random distributions. Defaults to 1.
1 = even distribution, 2 = distributed towards the center.
3 = very strongly distributed towards the center.
<vdist> - The vertical distribution of the clouds. As for hdist.

If the /sim/rendering/clouds3d-density is less than 1.0 (100%), then a
proportional number of clouds will be displayed.

The following example shows a stratus cloud group, which consists of 5
st-large clouds and 5 st-small clouds, distributed in a box 2000mx2000m,
and 100m high, evenly distributed.

<st>
<box>
<type>st-large</type>
<count>5</count>
<width>2000</width>
<height>100</height>
</box>
<box>
<type>st-small</type>
<count>b</count>
<width>2000</width>
<height>100</height>
</box>
</st>

The <layers> section contains definitions for a specific layer type.
The layer type is derived from the METAR/Weather settings by FG itself.

Each layer type is a named XML tag, i.e.: ns, sc, st, ac, cb, cu.
If a layer type is not defined, then a 2D layer is used instead.

The layer type contains one or more <cloud> definitions. This
defines a type of cloud box, and a weighting for that type (<count>).

For example, the following XML fragment will produce 3 "cb" cloud boxes
for every 1 "cu":

<cloud>
<name>cb</name>
<count>3</count>

</cloud>

<cloud>
<name>cu</name>
<count>1</count>

</cloud>

Clouds are randomly distributed across the sky in the x/y plane, but the
height of them is set by the weather conditions, with a random height range
applied, defined by <grid-z-rand>

Airspeed-indicator

The airspeed indicator can be initialized in an instrumentation.xml file.
If not specified, the generic indicator will be loaded
from the Aircraft/Generic/generic-instrumentation.xml.

The normal setup is

<airspeed-indicator>
<name>airspeed-indicator</name>
<number>0</number>
<total-pressure>/systems/pitot/total-pressure-inhg</total-pressure>
<static-pressure>/systems/static/pressure-inhg</static-pressure>
<has-overspeed-indicator>1</has-overspeed-indicator>
</airspeed-indicator>

0f course the total and static pressure may be sourced from any other
pitot and static system when defined:

<airspeed-indicator>
<name>airspeed-indicator</name>
<number>1</number>
<total-pressure>/systems/pitot[1]/total-pressure-inhg</total-pressure>
<static-pressure>/systems/static[1]/pressure-inhg</static-pressure>
<has-overspeed-indicator>0</has-overspeed-indicator>
</airspeed-indicator>

Note that the Aircraft/Generic/generic-systems.xml only initiates one
pitot and one static system, see also README.systems

<total-pressure> is optional --- defaults to "/systems/pitot/total-pressure-inhg"
For supersonic aircraft with an airspeed indicator NOT compensating for

a shockwave in front of the pitot tube (most probably the case), use:
<total-pressure>/systems/pitot/measured-total-pressure-inhg</total-pressure>

<static-pressure> is optional --- defaults to "/systems/static/pressure-inhg"
<has-overspeed-indicator> is optional --- defaults to 0 / off

The <has-overspeed-indicator> provides a property for "barber-pole" animation,
and is set to 0 / false by default ,

If enabled , these properties should be added in the aircraft -set file,
with that aircraft’s correct figures.

<airspeed-indicator>
<ias-1imit>248.0</ias-1limit>
<mach-1imit>0.48</mach-1imit>
<alt-threshold>13200.0</alt-threshold>
</airspeed-indicator>
The default values are for a Beechcraft B1900D

<ias-limit> is the aircraft’s VNE (never exceed speed) in KIAS

<mach-1imit> Mach speed limit.

10

<alt-threshold> altitude at which these figures were calculated.

Note : <mach-limit> is the mach limit at <alt-threshold>
This was designed for indicated airspeed limits, but could probably be extended
for mach limits.

To initiate additional airspeed indicators, add in your instrumentation
file (for airspeed indicator index 1):

<airspeed-indicator>
<name>airspeed-indicator</name>
<number>1</number>
<total-pressure>/systems/pitot[1]/total-pressure-inhg</total-pressure>
<static-pressure>/systems/static[1]/pressure-inhg</static-pressure>
<has-overspeed-indicator>0</has-overspeed-indicator>
</airspeed-indicator>

Note: this airspeed indicator sources its pressures from the second
pitot and static system (with index 1).
and in the aircraft -set file:
<airspeed-indicator n="1">
<serviceable type="bool" archive="y">true</serviceable>

</airspeed-indicator>

And if "has-overspeed-indicator" = 1, the appropriate limits as explained
above in the airspeed-indicator brackets.

Checklists

CHECKLISTS
You can create one or more checklist for an aircraft under /sim/checklists. These
are intended to mimic the checklists of aircraft themselves, and can be found under

the Help->Checklists menu within the simulator.

Tutorials are automatically generated from checklists on startup.

11

Each checklist is defined as a property tree under /sim/checklists/checklist[n]
with the following tags

<title> - Name of the checklist

<page> - Zero or more pages for the checklist containing:

<item> - One or more checklist items containing:
<name> - name of the checklist item (e.g. Carb Heat), to appear on the left
<value> - One or more values for the checklist item, to appear on the right

hand side

<marker> - A tutorial marker (displayed when the user presses the 7 button)
This can be easily placed using the Help->Display Tutorial Marker.
Contains x-m, y-m, z-m and scale tag.

<condition> - Optional standard FlightGear condition node that evaluates when the
checklist item has been completed.

<binding> - Zero or more bindings to execute the checklist item. Allows the use:
to have their virtual co-pilot perform the action if they select the
">" button next to the checklist item.

The <page> tag may be omitted for single-page checklists, with the <item> tags
immediately under the <checklist[n]> node.

See the cl172p for an example of this in action (Aircraft/cl172p/c172-checklists.xml).

Commands

FlightGear Commands Mini-HOWTO

David Megginson
Started: 2002-10-25
Last revised: 2007-12-01

In FlightGear, a *command* represents an action, while a *propertyx*
represents a state. The trigger for a command can be any kind of user
input, including the keyboard, mouse, joystick, GUI, instrument panel,
or a remote network client.

12

XML Command Binding Markup

Most of the command-binding in FlightGear is handled through static
XML configuration files such as $FG_ROOT/keyboard.xml for the
keyboard, $FG_RO0T/mice.xml for the mouse, and
$FG_ROOT/gui/menubar.xml for the menubar. In all of these files, you
reference a command through a binding. This binding advances the
first throttle by 1%, up to a maximum value of 1.0:

<binding>
<command>property-adjust</command>
<property>/controls/throttle[0]</property>
<step type="double">0.01</step>
<max>1.0</max>

</binding>

A command binding always consists of the XML ’binding’ element, with
one subelement named ’command’ containing the command name (such as
’property-adjust’). All other subelements are named parameters to the

command: in this case, the parameters are ’property’, ’step’, and
’max’. Here is a simpler binding, with no parameters:

<binding>

<command>exit</command>

</binding>

Bindings always appear inside some other kind of markup, depending on
the input type. For example, here is the binding from keyboard.xml
that links the ESC key to the ’exit’ command:

<key n="27">
<name>ESC</name>
<desc>Prompt and quit FlightGear.</desc>
<binding>
<command>exit</command>
</binding>
</key>

13

Usually, more than one binding is allowed for a single input trigger,
and bindings are executed in order from first to last. Bindings support
conditions (see README.conditions):

<key n="113">
<name>q</name>
<desc>Test</desc>

<binding>
<condition>
<property>/devices/status/mice/mouse/button[0]</property>
</condition>
<command>nasal</command>
<script>print("mouse button O pressed")</script>
</binding>
</key>

Keyboard definitions can embed bindings in tags <mod-up> (key released),
<mod-shift>, <mod-ctrl>, <mod-alt>, <mod-meta>, <mod-super>, and <mod-hyper>.
Nesting is supported. Meta, Super, and Hyper modifier tags are for local

use only, and must be supported by the operating system to work.

<key n="113">
<name>q</name>
<desc>Test</desc>
<binding>
<command>nasal</command>
<script>print("q pressed")</script>
</binding>

<mod-alt>
<binding>
<command>nasal</command>
<script>print("Alt-q pressed")</script>
</binding>

<mod-super>

<binding>
<command>nasal</command>

14

<script>print ("Alt-Super-q pressed")</script>
</binding>

<mod-meta>

<binding>

<command>nasal</command>

<script>print ("Alt-Super-Meta-q pressed")</script>
</binding>

</mod-meta>
</mod-super>
</mod-alt>
</key>

Built-in Commands

As of the last revision date, the following commands were available
from inside FlightGear; the most commonly-used ones are the commands
that operate on property values (FlightGear’s internal state):

null - do nothing

script - execute a PSL script
script: the PSL script to execute

exit - prompt and quit FlightGear
pause - pause/resume the simulation
load - load properties from an XML file
file: the name of the file to load, relative to the current
directory (defaults to "fgfs.sav")
save - save properties to an XML file

file: the name of the file to save, relative to the current
directory (defaults to "fgfs.sav").

15

loadxml - load XML file into property tree
filename: the path & filename of the file to load
targetnode: the target node within the property tree where to store the XML
file’s structure. If targetnode isn’t defined, then the data will be stored
in a node "data" under the argument branch.

savexml - save property tree node to XML file
filename: the path & filename for the file to be saved
sourcenode: the source node within the property tree where the XML file’s
structure is assembled from. If sourcenode isn’t defined, then savexml will
try to save data stored in a node "data" in the argument branch.

panel-load - (re)load the 2D instrument panel
path: the path of the XML panel file, relative to $FG_ROOT (defaults
to the value of /sim/panel/path if specified, or
"Panels/Default/default.xml" as a last resort.
panel-mouse-click - pass a mouse click to the instrument panel
button: the number of the mouse button (0O-based)
is-down: true if the button is down, false if it is up
x-pos: the x position of the mouse click
y-pos: the y position of the mouse click
preferences-load - (re)load preferences
path: the file name to load preferences from, relative to $FG_ROOT.
Defaults to "preferences.xml".
view-cycle - cycle to the next viewpoint
screen-capture - capture the screen to a file
tile-cache-reload - reload the scenery tile cache

lighting-update - update FlightGear’s lighting

property-toggle - swap a property value between true and false
property: the name of the property to toggle

property-assign - assign a value to a property

16

property[0] : the name of the property that will get the new value.
value: the new value for the property; or
property[1]: the name of the property holding the new value.

property-interpolate - assign a value to a property, interpolated
over time
property[0] : the name of the property that will get the new value
and defines the starting point of the interpolation

value: the new value for the property; or
property[1]: the name of the property holding the new value.
time: the time in seconds it takes for the transition from the
0ld value to the new value of property[0]; or
rate: the ammount of change per second the value of property[0] changes

to transition to the new value

property-adjust - adjust the value of a property

property: the name of the property to increment or decrement

step: the amount of the increment or decrement (defaults to 0)

offset: input offset distance (used for the mouse; multiplied by
factor)

factor: factor for multiplying offset distance (used for the mouse;
defaults to 1)

min: the minimum allowed value (default: no minimum)

max: the maximum allowed value (default: no maximum)

mask: ’integer’ to apply only to the left of the decimal point;
’decimal’ to apply only to the right of the decimal point; ’all’
to apply to the full value (defaults to ’all’)

wrap: true if the value should be wrapped when it passes min or max;
both min and max must be specified (defaults to false)

property-multiply - multiply the value of a property

property: the name of the property to multiply

factor: the amount by which to multiply (defaults to 1.0)

min: the minimum allowed value (default: no minimum)

max: the maximum allowed value (default: no maximum)

mask: ’integer’ to apply only to the left of the decimal point;
’decimal’ to apply only to the right of the decimal point; ’all’
to apply to the full value (defaults to ’all’)

wrap: true if the value should be wrapped when it passes min or max;
both min and max must be specified (defaults to false)

17

property-swap - swap the values of two properties
property[0] : the name of the first property
property[1]: the name of the second property

property-scale - set the value of a property based on an axis
property: the name of the property to set
setting: the current input setting (usually a joystick axis from -1

or 0 to 1)

offset: the offset to shift by, before applying the factor (defaults
to 0)

factor: the factor to multiply by (use negative to reverse; defaults
to 1.0)

squared: if true will square the resulting value (same as power=2)
power: the resulting value will be taken to the power of this integer
value (overrides squared; default=1)

property-cycle - cycle a property through a set of values
property: the name of the property to cycle
value[*]: all of the allowed values

dialog-new - create new dialog from the argument branch

dialog-show - show an XML-configured dialog box
dialog-name - the name of the dialog to show

dialog-close - close the active dialog box
dialog-update - copy values from FlightGear to the active dialog box
object-name: the name of the GUI object to update (defaults to all
objects)
dialog-apply - copy values from the active dialog box to FlightGear
object-name: the name of the GUI object to apply (defaults to all
objects)

presets-commit - commit preset values from /sim/presets

open-browser - open the web browser and show given file
path: name of the local file to be opened.

18

url: URL to be opened (http://..., ftp://...).

The following commands are temporary, and will soon disappear or be
renamed; do NOT rely on them:

old-save-dialog - offer to save a flight

old-load-dialog - offer to load a flight

old-reinit-dialog - offer to reinit FlightGear
old-hires-snapshot-dialog - save a hires screen shot
old-snapshot-dialog - save a screenshot

old-print-dialog - print the screen (Windows only)
old-pilot-offset-dialog - set pilot offsets graphically
old-hud-alpha-dialog - set the alpha value for the HUD
old-properties-dialog - display the property browser
old-preset-airport-dialog - set the default airport
old-preset-runway-dialog - set the default runway
old-preset-offset-distance-dialog - set the default offset distance
old-preset-altitude-dialog - set the default altitude
old-preset-glidescope-dialog - set the default glidescope
old-preset-airspeed-dialog - set the default airspeed
old-preset-commit-dialog - commit preset values
old-ap-add-waypoint-dialog - add a waypoint to the current route

old-ap-pop-waypoint-dialog - remove a waypoint from the current route

19

old-ap-clear-dialog - clear the current route
old-ap-adjust-dialog - adjust the autopilot settings

old-lat-lon-format-dialog - toggle the lat/lon format in the HUD

Adding New Commands in C++

To add a new command to FlightGear, you first need to create a
function that takes a single SGPropertyNode const pointer as an
argument :

void
do_something (SGPropertyNode * arg)
{
something () ;
}

Next, you need to register it with the command manager:
globals->get_commands () ->addCommand ("something", do_something);

Now, the command "something" is available to any mouse, joystick,
panel, or keyboard bindings. If the bindings pass any arguments, they
will be children of the SGPropertyNode passed in:

void
do_something (const SGPropertyNode * arg)
{
something(arg->getStringValue("foo"), arg->getDoubleValue("bar"));
}

That’s pretty-much it. Apologies in advance for not making things any
more complicated.

20

6 Conditions

CONDITIONS IN FLIGHTGEAR PROPERTY FILES

Written by David Megginson, david@megginson.com
Last modified: $Date$

This document is in the Public Domain and comes with NO WARRANTY!

1. Introduction

Some FlightGear property files contain conditions, affecting whether
bindings or animations are applied. For example, the following
binding will apply only when the /sim/input/selected/engine[0]
property is true:

<binding>
<condition>
<property>/sim/input/selected/engine [0]</property>
</condition>
<command>property-assign</command>
<property>/controls/starter [0]</property>
<value type="bool">true</value>
</binding>

Conditions always occur within a property subtree named "condition",
which is equivalent to an "and" condition.

2. Comparison Operators

The simplest condition is "property". It resolves as true when the
specified property has a boolean value of true (i.e. non-zero, etc.)
and false otherwise. Here is an example:

<condition>
<property>/sim/input/selected/engine [0]</property>

21

</condition>

For more sophisticated tests, you can use the "less-than",
"less-than-equals", "greater-than", "greater-than-equals", "equals",
and "not-equals" comparison operators. These all take two operands,
either two "property" operands or one "property" and one "value"
operand, and return true or false depending on the result of the
comparison. The value of the second operand is always forced to the
type of the first; for example, if you compare a string and a double,
the double will be forced to a string and lexically compared. If one
of the operands is a property, it is always assumed to be first. Here
is an example of a comparison that is true only if the RPM of the
engine is less than 1500:

<condition>

<less-than>
<property>/engines/engine [0] /rpm</property>
<value>1500</value>

</less-than>

</condition>

3. Boolean Operators

Finally, there are the regular boolean operators "and", "or", and
"not". Each one surrounds a group of other conditions, and these can
be nested to arbitrary depths. Here is an example:

<condition>
<and>
<or>
<less-than>
<property>/engines/engine [0] /rpm</property>
<value>1500</value>
</less-than>
<greater-than>
<property>/engines/engine [0] /rpm</property>
<value>2500</value>
</greater-than>

22

</or>
<property>/engines/engine [0] /running</property>
</and>
</condition>

The top-level "condition" is an implicit "and".

There is no equivalent to the regular programming ’else’ statement in
FlightGear conditions; instead, each condition separately must take
the others into account. For example, the equivalent of

if (x == 3) ... else if (y == B5) ... else
in FlightGear conditions is

<condition>
<equals>
<property>/x</property>
<value>3</value>
</equals>
<not>
<equals>
<property>/y</property>
<value>5</value>
</equals>
</not>
</condition>

and then

<condition>
<equals>
<property>/y</property>
<value>5</value>
</equals>
<not>

23

<equals>
<property>/x</property>
<value>3</value>
</equals>
</not>
</condition>

and then

<condition>
<not>
<equals>
<property>/x</property>
<value>3</value>
</equals>
</not>
<not>
<equals>
<property>/y</property>
<value>5</value>
</equals>
</not>
</condition>

It’s verbose, but it works nicely within existing property-based

formats and provides a lot of flexiblity.

5. Syntax Summary

Here’s a quick syntax summary:
* <and>...</and>

Contains one or more subconditions, all of which must be true.
* <condition>...</condition>

The top-level container for conditions, equivalent to an "and" group

24

<equals>...</equals>

Contains two properties or a property and value, and is true if the
properties have equivalent values.

<not-equals>...</not-equals>

Contains two properties or a property and value, and is true if the
properties have different values.

<greater-than>...</greater-than>

Contains two properties or a property and a value, and is true if
the second property or the value has a value greater than the first
property.

<greater-than-equals>...</greater-than-equals>

Contains two properties or a property and a value, and is true if
the second property or the value has a value greater than or equal
to the first property.

<less-than>...</less-than>

Contains two properties or a property and a value, and is true if
the second property or the value has a value less than the first
property.

<less-than-equals>...</less-than-equals>

Contains two properties or a property and a value, and is true if
the second property or the value has a value less than or equal

to the first property.

<not>...</not>

Contains one subcondition, which must not be true.

<not-equals>...</not-equals>

25

Contains two properties or a property and value, and is true if the
properties do not have equivalent values.

* <or>...</or>

Contains one or more subconditions, at least one of which must be
true.

* <property>...</property>
The name of a property to test.
* <value>...</value>

A literal value in a comparison.

Digitalfilters

COMMON SETTINGS

Currently four types of digital filter implementations are supported. They all
serve an individual purpose or are individual implementations of a specific
filter type. Each filter implementation uses the same set of basic configuration
tags and individual configuration elements. These individual elements are
described in the section of the filter.

The InputValue

Each filter has several driving values, like the input value itself, sometimes

a reference value, a gain value and others. Most of these input values can be
either a constant value or the value of a property. They all use the same syntax
and will be referred to as InputValue in the remaining document.

The complete XML syntax for a InputValue is

<some-element>
<condition>

26

<!-- any condition as defined in README.conditions -->
</condition>
<property>/some/property/name</property>
<value>0.0</value>
<scale>1.0</value>
<offset>0.0</offset>
<max>infinity</max>
<min>-infinity<min>
<abs>false</abs>
<period>
<min>-180.0</min>
<max>-180.0</max>
</period>
</some-element>

The enclosing element <some-element> is the element defined in each filter, like
<input>, <u_min>, <reference> etc. These elements will be described later.

The value of the input is calculated based on the given value, scale and offset as
value * scale + offset

and the result is clipped to min/max, if given.

With the full set of given elements, the InputValue will initialize the named
property to the value given, reduced by the given offset and reverse scaled by

the given scale.

Example:

<input>
<property>/controls/flight/rudder</property>
<value>0.0</value>
<scale>0.5</scale>
<offset>0.5</offset>

</input>

Will use the property /controls/flight/rudder as the input of the filter. The
property will be initialized at a value of zero and since the property usually is
in the range [-1..+1], the the value of <input> will be in the range

(-1)%0.5+0.5 to (+1)%0.5+0.5 which is [0..1].

The default values for elements not given are:

<value/> : 0.0
<scale/> : 1.0

27

<offset/>: 0.0
<property/> : none

<min/> : unclipped
<max/> : unclipped
<abs/> : false

Some examples:
<input>
<property>/position/altitude-ft</property>
<scale>0.3048</scale>
</input>
Gives the altitude in meters. No initialization of the property is performed, no
offset applied.

<reference>
<value>0.0</value>

</reference>

A constant reference of zero.

A abbreviated method of defining values exist for using a just constant or a
property. The above example may be written as

<reference>0.0</reference>

Or if the reference is defined in a property
<reference>/some/property/name</reference>

No initialization, scaling or offsetting is performed here.

The logic behind this is: If the text node in the element (the text between the
opening and closing tag) can be converted to a double value, it will be interpreted
as a double value. Otherwise the text will

be interpreted as a property name.

Examples:

<reference>3.1415927</reference> - The constant of PI (roughly)
<reference>/position/altitude-ft</reference> - The property /position/altitude-ft
<reference>3kings</reference> - The constant 3. The word kings is

ignored
The property food4less

<reference>food4less</reference>
The <property> element may also be written as <prop> for backward compatibility.

There may be one or more InputValues for the same input of a filter which may be
bound to conditions. Each InputValue will have its condition checked in the order

28

of InputValues given in the configuration file. The first InputValue that returns
true for its condition will be evaluated. Chaining a number of InputValues with
conditions and an unconditioned InputValue works like the C language equivalent
if(condition) {

// compute value of first element
} else if(condition2) {

// compute value of second element
} else if(condition3) {

// compute value of third element
} else {

// compute value of last element

Example: Set the gain to 3.0 if /autopilot/locks/heading equals dg-heading-hold or
2.0 otherwise.
<digital-filter>
<gain>
<condition>
<equals>
<property>/autopilot/locks/heading</property>
<value>dg-heading-hold</value>
</equals>
</condition>
<value>3.0</value>
<gain>
<!-- Hint: omit a condition here as a fallthru else condition -->
</gain>
<value>2.0</value>
<gain>
<digital-filter>

If the element <abs> is used and set to the value "true", only the absolute
value of the input (the positive part) is used for further computations. The

abs function is applied after all other computations are completed.

OutputValue

Each filter drives one to many output properties. No scaling or offsetting is
implemented for the output value, these should be done in the filter itself.
The output properties are defined in the <output/> element by adding <property/>

29

elements within the <output/> element. For just a single output property, the
<property/> element may be ommited. For backward compatibility, <property/> may
be replaced by <prop/>. Non-existing properties will be created with type double.

Example: (Multiple output properties)

<output>
<property>/some/output/property</property>
<property>/some/other/output/property</property>
<property>/and/another/output/property</property>

</output>

Example: a single output property
<output>/just/a/single/property</output>

Other Common Settings

<name> String The name of the filter. Used for debug purpose.
Example:
<name>pressure rate filter</name>

<debug> Boolean If true, this filter puts out debug information when
updated. Example: <debug>false</debug>

<input> InputValue The input property driving the filter.
Refer to InputValue for details.

<reference> InputValue The reference property for filter that need one.
Refer to InputValue for details.

<output> Complex Each filter can drive one to many output properties.
Refer to OutputValue for details.

<u_min> InputValue This defines the optional minimum and maximum value the

<u_max> output is clamped to. If neither <u_min> nor <u_max>
exists, the output is only limited by the internal limit
of double precision float computation. If either <u_min>
or <u_max> is given, clamping is activated. A missing min
or max value defaults to 0 (zero).
Note: <u_min> and <u_max> may also occour within a <config:
element. <min> and <max> may be used as a substitude for

30

the corresponding u_xxx element.

<period> Complex Define a periodical input or output value. The phase width
is defined by the child elements <min> and <max> which are
of type InputValue

Example: Limit the pilot’s body temperature to a constant minimum of 36 and a
maximum defined in /pilots/max-body-temperature-degc, initialized to 40.0
<u_max>

<prop>/pilots/max-body-temperature-degc</prop>

<value>40.0</
</u_max>
<min>

<value>36.0</value>
</min

Implicit definition of the minimum value of O (zero) and defining a maximum of 100.0
<config>

<u_max>100.0</u_max>
</config>

This defines the input or output as a periodic value with a phase width of 360, like
the compass rose. Any value reaching the filter’s input or leaving the filter at the
output will be transformed to fit into the given range by adding or substracting omne
phase width of 360. Values of -270, 90 or 450 applied to this periodical element wil:
always result in +90. A value of 630, 270 or -90 will be normalized to -90 in the
given example.
<period>

<min>-180.0</min>

<max>180.0</max>
</period>

<enable> Complex Define a condition to enable or disable the filter. For
disabled filters, no output computations are performed.
Only enabled filters fill the output properties. The
default for undefined conditions is enabled.
Several way exist to define a condition. The most simple
case is checking a boolean property. For this, just a
<prop> element naming this boolean property is needed.
The boolean value of the named property defines the

31

enabled state of the filter. To compare the value of a
property with a constant, a <prop> and a <value> element
define the property name and the value to be compared.

The filter is enabled, if the value of the property equals
the given value. A case sensitive string compare is
performed here.

To define more complex conditions, a <condition> element
may be used to define any condition described in
README.conditions. If a <condition> element is present
and if it contains a valid condition, this conditions has
precedence over a given <prop>/<value> condition.

The child element <honor-passive>, a boolean flag, may be
present within the <enable> element. If this element is
true, the property /autopilot/locks/passive-mode is checkec
and if it is true, the filter output is computed, but the
output properties are not set. The default for
honor-passive is false

Example: Check a boolean property, only compute this filter if gear-down is true and
/autopilot/locks/passive-mode is false

<enable>

<prop>/gear/gear-down</prop>
<honor-passive>true</honor-passive>

</enable>

Check a property for equality, only compute this filter if the autopilot is locked

in heading mode.
<enable>

<prop>/autopilot/locks/heading</prop>
<value>dg-heading-hold</value>

</enable>

Use a complex condition, only compute this filter if the autopilot is serviceable
and the lock is either dg-heading-hold or navl-heading-hold

<enable>
<condition>

<property>/autopilo/serviceable</property>

<or>
<equals>

<property>/autopilot/locks/heading</property>
<value>dg-heading-hold</value>

32

</equals>
<equals>
<property>/autopilot/locks/heading</property>
<value>navl-heading-hold</value>
</equals>
</or>
</condition>
</enable>

INDIVIDUAL FILTER CONFIGURATION

Digital Filter

Six different types of digital filter can be configured inside the autopilot
configuration file. There are four low-pass filter types and two gain filter

types.

The low-pass filter types are:

* Exponential

* Double exponential
* Moving average

* Noise spike filter

The gain filter types are:

* gain
* reciprocal

To add a digital filter, place a <filter> element under the root element. Next to

the global configuration elements described above, the following elements configure

the digital filter:

<filter-time> InputValue This tag is only applicable for the exponential and
double-exponential filter types. It controls the
bandwidth of the filter. The bandwidth in Hz of the
filter is: 1/filter-time. So a low-pass filter with a
bandwidth of 10Hz would have a filter time of 1/10 = 0.1

<samples> InputValue This tag only makes sense for the moving-average filter.

33

<max-rate-of-change>

<gain>

InputValue

InputValue

It says how many past samples to average.

This tag is applicable for the noise-spike filter.
It says how much the value is allowed to change per
second.

This is only applicable to the gain and reciprocal filter
types. The output for gain filter is computed as input*gair
while the reciprocal filter computes output as gain/input
for input values != 0 (zero). Gain may be a constant, a
property name defined by a <prop> element within the <gain:
element or a property name initialized to a value by using
a <prop> and <value> element.

Example: a pressure-rate-filter implemented as a double exponential low pass filter
with a bandwith of 10Hz

<filter>
<name>pressure-rate-filter</name>
<debug>false</debug>
<type>double-exponential</type>
<enable>

</enable>
<input>/autopilot/internal/pressure-rate</input>
<output>/autopilot/internal/filtered-pressure-rate</output>
<filter-time>0.1</filter-time>

</filter>

<prop>/autopilot/locks/pressure-rate-filter</prop>
<value>true</value>

This will filter the pressure-rate property. The output will be to a new
property called filtered-pressure-rate. You can select any numerical property
from the property tree. The input property will not be affected by the filter,
it will stay the same as it would if no filter was configured.

Example 2:

<filter>
<name>airspeed elevator-trim gain reciprocal filter</name>

34

<debug>false</debug>

<enable>
<prop>/autopilot/locks/airspeed-elevator-trim-gain</prop>
<value>true</value>

</enable>

<type>reciprocal</type>

<gain>
<prop>/autopilot/settings/elevator-trim-airspeed-reciprocal-gain</prop>
<value>7</value>

</gain>

<input>/velocities/airspeed-kt</input>

<output>/autopilot/internal/elevator-trim-gain</output>

<u_min>0.005</u_min>

<u_max>0.02</u_max>

</filter>

This will use the /velocities/airspeed-kt property to produce a gain factor
that reduces as airspeed increases. At airspeeds up to 350kt the gain will

be clamped to 0.02, at 700kt the gain will be 0.01 and at 1400kt the gain will
be 0.005. The gain will be clamped to 0.005 for airspeeds > 1400kt.

The output from this filter could then be used to control the gain in a PID
controller:

<pid-controller>

<name>Pitch hold</name>

<debug>false</debug>

<enable>
<prop>/autopilot/locks/pitch</prop>
<value>true</value>

</enable>

<input>
<prop>/orientation/pitch-deg</prop>

</input>

<reference>
<prop>/autopilot/settings/target-pitch-deg</prop>

</reference>

<output>
<prop>/autopilot/internal/target-elevator-trim-norm</prop>

</output>

35

<config>
<Ts>0.05</Ts>
<Kp>
<prop>/autopilot/internal/elevator-trim-gain</prop>
<value>0.02</value>
</Kp>
<beta>1.0</beta>
<alpha>0.1</alpha>
<gamma>0.0</gamma>
<Ti>2.0</Ti>
<Td>0.2</Td>
<u_min>-1.0</u_min>
<u_max>1.0</u_max>
</config>
</pid-controller>

IMPORTANT NOTE: The <Kp> tag in PID controllers has been revised to operate in
the same way as the <gain> elements in filters. However, the original format

of <Kp> will continue to function as before i.e. <Kp>0.02</Kp> will specify a

fixed and unalterable gain factor, but a warning message will be output.

The gain type filter is similar to the reciprocal filter except that the gain
is applied as a simple factor to the input.

Parameters

<name> The name of the filter. Give it a sensible name!

<debug> If this tag is set to true debugging info will be printed on the
console.

<enable> Encloses the <prop> and <value> tags which are used to enable or
disable the filter. Instead of the <prop> and <value> tags, a <condition>
tag may be used to define a condition. Check README.conditions for more

details about conditions. Defaults to enabled if unspecified.

<type> The type of filter. This can be exponential, double-exponential,
moving-average, noise-spike, gain or reciprocal.

<input> The input property to be filtered. This should of course be a

36

numerical property, filtering a text string or a boolean value does not make
sense.

<output> The filtered value. You can make up any new property.
<u_min> The minimum output value from the filter. Defaults to -infinity.
<u_max> The maximum output value from the filter. Defaults to +infinity.

These are the tags that are applicable to all filter types. The following tags
are filter specific.

<filter-time> This tag is only applicable for the exponential and
double-exponential filter types. It controls the bandwidth of the filter. The
bandwidth in Hz of the filter is: 1/filter-time. So a low-pass filter with a
bandwidth of 10Hz would have a filter time of 1/10 = 0.1

<samples> This tag only makes sense for the moving-average filter. It says how
many past samples to average.

<max-rate-of-change> This tag is applicable for the noise-spike filter. Is
says how much the value is allowed to change per second.

<gain> This, and it’s enclosed <prop> and <value> tags, are only applicable to
the gain and reciprocal filter types. The <prop> tag specifies a property node
to hold the gain value and the <value> tag specifies an initial default value.

The gain defaults to 1.0 if unspecified.

The output from the gain filter type is: input * gain.
The output from the reciprocal filter type is: gain / input.

The gain can be changed during run-time by updating the value in the property
node.

Effects

Effects

37

Effects describe the graphical appearance of 3d objects and scenery in
FlightGear. The main motivation for effects is to support OpenGL
shaders and to provide different implementations for graphics hardware
of varying capabilities. Effects are similar to DirectX effects files
and Ogre3D material scripts.

An effect is a property list. The property list syntax is extended
with new "vec3d" and "vec4d" types to support common computer graphics
values. Effects are read from files with a ".eff" extension or can be
created on-the-fly by FlightGear at runtime. An effect consists of a
"parameters" section followed by "technique" descriptions. The
"parameters" section is a tree of values that describe, abstractly,
the graphical characteristics of objects that use the effect. Techniques
refer to these parameters and use them to set OpenGL state or to set
parameters for shader programs. The names of properties in the
parameter section can be whatever the effects author chooses, although
some standard parameters are set by FlightGear itself. On the other
hand, the properties in the techniques section are all defined by the
FlightGear.

Techniques

A technique can contain a predicate that describes the OpenGL
functionality required to support the technique. The first

technique with a valid predicate in the list of techniques is used

to set up the graphics state of the effect. A technique with no
predicate is always assumed to be valid. The predicate is written in a
little expression language that supports the following primitives:

and, or, equal, less, less-equal

glversion - returns the version number of OpenGL

extension-supported - returns true if an OpenGL extension is supported

property - returns the boolean value of a property

float-property - returns the float value of a property, useful inside equal, less
or less-equal nodes

shader-language - returns the version of GLSL supported, or O if there is none.

The proper way to test whether to enable a shader-based technique is:
<predicate>

38

<and>
<property>/sim/rendering/shader-effects</property>
<less-equal>
<value type="float">1.0</value>
<shader-language/>
</less-equal>
</and>
</predicate>

There is also a property set by the user to indicate what is the level
of quality desired. This level of quality can be checked in the predicate
like this
<predicate>
<and>
<property>/sim/rendering/shader-effects</property>
<less-equal>
<value type="float">2.0</value>
<float-property>/sim/rendering/quality-level</float-property>
</less-equal>
<!-- other predicate conditions -->
</and>
</predicate>

The range of /sim/rendering/quality-level is [0..5]
* 2.0 is the threshold for relief mapping effects,
* 4.0 is the threshold for geometry shader usage.

A technique can consist of several passes. A pass is basically an Open
Scene Graph StateSet. Ultimately all OpenGL and 0SG modes and state
attributes will be accessable in techniques. State attributes -- that
is, technique properties that have children and are not just boolean
modes -- have an <active> parameter which enables or disables the
attribute. In this way a technique can declare parameters it needs,
but not enable the attribute at all if it is not needed; the decision
can be based on a parameter in the parameters section of the

effect. For example, effects that support transparent and opaque
geometry could have as part of a technique:

<blend>
<active><use>blend/active</use></active>

39

<source>src-alpha</source>
<destination>one-minus-src-alpha</destination>
</blend>

So if the blend/active parameter is true blending will be activated
using the usual blending equation; otherwise blending is disabled.

Values of Technique Attributes

Values are assigned to technique properties in several ways:

* They can appear directly in the techniques section as a

constant. For example:
<uniform>

<name>ColorsTex</name>

<type>sampler-1d</type>

<value type="int">2</value>
</uniform>
* The name of a property in the parameters section can be
referenced using a "use" clause. For example, in the technique
section:
<material>

<ambient><use>material/ambient</use></ambient>
</material>
Then, in the parameters section of the effect:
<parameters>

<material>

<ambient type="vec4d">0.2 0.2 0.2 1.0</ambient>

</material>

</parameters>

It’s worth pointing out that the "material" property in a
technique specifies part of OpenGL’s state, whereas "material"
in the parameters section is just a name, part of a
hierarchical namespace.

* A property in the parameters section doesn’t need to contain

a constant value; it can also contain a "use" property. Here
the value of the use clause is the name of a node in an

40

external property tree which will be used as the source of a

value. If the name begins with ’/’, the node is in

FlightGear’s global property tree; otherwise, it is in a local

property tree, usually belonging to a model [NOT IMPLEMENTED

YET] . For example:

<parameters>
<chrome-light><use>/rendering/scene/chrome-light</use></chrome-light>

</parameters>

The type is determined by what is expected by the technique

attribute that will ultimately receive the value. [There is

no way to get vector values out of the main property system

yet; this will be fixed shortly.] Values that are declared

this way are dynamically updated if the property node

changes.

OpenGL Attributes

The following attributes are currently implemented in techiques:
alpha-test - children: active, comparison, reference
Valid values for comparision:
never, less, equal, lequal, greater, notequal, gequal,
always

alpha-to-coverage - true, false

blend - children: active, source, destination, source-rgb,
source—alpha, destination-rgb, destination-alpha
Each operand can have the following values:
dst-alpha, dst-color, one, one-minus-dst-alpha,
one-minus-dst-color, one-minus-src-alpha,
one-minus-src-color, src-alpha, src-alpha-saturate,
src-color, constant-color, one—-minus-constant-color,
constant-alpha, one-minus-constant-alpha, zero

cull-face - front, back, front-back
lighting - true, false

material - children: active, ambient, ambient-front, ambient-back, diffuse,

41

diffuse-front, diffuse-back, specular, specular-front,
specular-back, emissive, emissive-front, emissive-back, shininess,
shininess-front, shininess-back, color-mode

polygon-mode - children: front, back
Valid values:
fill, line, point

program
vertex-shader
geometry-shader
fragment-shader
attribute

geometry-vertices-out - integer, max number of vertices emitted by geometry

shader
geometry-input-type - points, lines, lines-adjacency, triangles,
triangles-adjacency
geometry-output-type - points, line-strip, triangle-strip

render-bin - (0SG) children: bin-number, bin-name
rendering-hint - (0SG) opaque, transparent
shade-model - flat, smooth

texture-unit - has several child properties:
unit - The number of an OpenGL texture unit
point-sprite - true, false - Whether this should rendered as a point-sprite
type - This is either an OpenGL texture type or the name of a
builtin texture. Currently supported OpenGL types are 1d, 2d,
3d which have the following common parameters:
image (file name)
filter - nearest, linear, [nearest|linear]-mipmap-[nearest|linear]
mag-filter - nearest, linear, [nearest|linear]-mipmap-[nearest|linear]
wrap-s - clamp, clamp-to-border, clamp-to-edge, mirror, repeat
wrap-t - clamp, clamp-to-border, clamp-to-edge, mirror, repeat
wrap-r - clamp, clamp-to-border, clamp-to-edge, mirror, repeat
mipmap-control - control the mipmap on a per-channel basis. Children:
function-r - auto, average, sum, product, min, max
function-g - auto, average, sum, product, min, max

42

function-b - auto, average, sum, product, min, max
function-a - auto, average, sum, product, min, max

The following built-in types are supported:
white - 1 pixel white texture
noise - a 3d noise texture. (size parameter defines size of texture)
light-sprite - a procedurally generated sprite suitable for point lights
cubemap - build a cube-map. Children:
images - build from 6 images. Children: [positivel|negativel-[x|ylz]
image - build from a single cross-image

environment
mode - add, blend, decal, modulate, replace
color

texenv-combine
combine-[rgblalphal - replace, modulate, add, add-signed, interpolate, subtract,
source[0]1|2]-[rgblalphal] - constant, primary_color, previous, texture, texture [(
operand[0]1|2]-[rgblalpha] -src-color, one-minus-src-color, src-alpha, one-minus-
scale-[rgblalphal
constant-color

texgen
mode - object-linear, eye-linear, sphere-map, normal-map, reflection-map
planes - s, t, r, q
uniform
name
type - float, float-vec3, float-vec4, sampler-1d, sampler-2d,
sampler-3d
vertex-program-two-side - true, false

vertex-program-point-size - true, false

Inheritance

One feature not fully illustrated in the sample below is that
effects can inherit from each other. The parent effect is listed in

43

the "inherits-from" form. The child effect’s property tree is
overlaid over that of the parent. Nodes that have the same name and
property index -- set by the "n=" attribute in the property tag --
are recursively merged. Leaf property nodes from the child have
precedence. This means that effects that inherit from the example
effect below could be very short, listing just new

parameters and adding nothing to the techniques section;
alternatively, a technique could be altered or customized in a
child, listing (for example) a different shader program. An example
showing inheritance Effects/crop.eff, which inherits some if its
values from Effects/terrain-default.eff.

FlightGear directly uses effects inheritance to assign effects to 3D
models and terrain. As described below, at runtime small effects are
created that contain material and texture values in a "parameters"
section. These effects inherit from another effect which references
those parameters in its "techniques" section. The derived effect
overrides any default values that might be in the base effect’s
parameters section.

Generate

Often shader effects need tangent vectors to work properly. These
tangent vectors, usually called tangent and binormal, are computed
on the CPU and given to the shader as vertex attributes. These
vectors are computed on demand on the geometry using the effect if
the ’generate’ clause is present in the effect file. Exemple

<generate>
<tangent type="int">6</tangent>
<binormal type="int">7</binormal>
<normal type="int">8</normal>
</generate>

Valid subnodes of ’generate’ are ’tangent’, ’binormal’ or ’normal’.
The integer value of these subnode is the index of the attribute

that will hold the value of the vec3 vector.

The generate clause is located under Propertylist in the xml file.

44

In order to be available for the vertex shader, these data should
be bound to an attribute in the program clause, like this

<program>
<vertex-shader>my_vertex_shader</vertex-shader>
<attribute>
<name>my_tangent_attribute</name>
<index>6</index>
</attribute>
<attribute>
<name>my_binormal_attribute</name>
<index>7</index>
</attribute>
</program>

attribute names are whatever the shader use. The index is the one
declared in the ’generate’ clause. So because generate/tangent has
value 6 and my_tangent_attribute has index 6, my_tangent_attribute
holds the tangent value for the vertex.

Default Effects in Terrain Materials and Models

Effects for terrain work in this way: for each material type in
materials.xml an effect is created that inherits from a single default
terrain effect, Effects/terrain-default.eff. The parameters section of
the effect is filled in using the ambient, diffuse, specular,
emissive, shininess, and transparent fields of the material. The
parameters image, filter, wrap-s, and wrap-t are also initialized from
the material xml. Seperate effects are created for each texture
variant of a material.

Model effects are created by walking the OpenSceneGraph scene graph
for a model and replacing nodes (osg::Geode) that have state sets with
node that uses an effect instead. Again, a small effect is created
with parameters extracted from 0SG objects; this effect inherits, by
default, from Effects/model-default.eff. A larger set of parameters is
created for model effects than for terrain because there is more
variation possible from the 0SG model loaders than from the terrain

45

system. The parameters created are:

* material active, ambient, diffuse, specular, emissive,
shininess, color mode
* blend active, source, destination
* shade-model
* cull-face
* rendering-hint
* texture type, image, filter, wrap-s, wrap-t

Specifying Custom Effects

You can specify the effects that will be used by FlightGear as the
base effect when it creates terrain and model effects.

In the terrain materials.xml, an "effect" property specifies the name
of the model to use.

In model .xml files, A richer syntax is supported. [TO BE DETERMINED]
Material animations will be implemented by creating a new effect

that inherits from one in a model, overriding the parameters that
will be animated.

The Effects directory contains the effects definitions; look there for
examples. Effects/crop.eff is a good example of a complex effect.

Application

To apply an effect to a model or part of a model use:

<effect>
<inherits-from>Effects/light-cone</inherits-from>
<object-name>Cone</object-name>

</effect>

46

where <inherits-from> </inherits-from> contains the path to the effect you want to
apply. The effect does not need the file extension.

NOTE:

Chrome, although now implemented as an effect, still retains the old method of
application:

<animation>
<type>shader</type>
<shader>chrome</shader>
<texture>glass_shader.png</texture>
<object-name>windscreen</object-name>
</animation>

in order to maintain backward compatibility.

Electrical

Specifying and Configuring and Aircraft Electrical System

Written by Curtis L. Olson <curt@flightgear.org>

February 3, 2003 - Initial revision.

Introduction

The FlightGear electrical system model is an approximation. We don’t
model down to the level of individual electrons, but we do try to
model a rich enough subset of components so that a realistic (from the
pilot’s perspective) electrical system may be implemented. We try to
model enough of the general flow so that typical electrical system
failures can be implimented and so that the pilot can practice
realistic troubleshooting techniques and learn the basic structure and

47

relationships of the real aircraft electrical system.

An electrical system can be built from 4 major components: suppliers,
buses, outputs, and connectors. Suppliers are things like batteries
and generators. Buses collect input from multiple suppliers and feed
multiple outputs. Outputs are not strictly necessary, but are
included so we can name generic output types and provide a consistent
naming scheme to other FlightGear subsystems. Finally connectors
connect a supplier to a bus, or a bus to an output, and optionally can
specify a switch property (either a physical switch or a circuit
breaker.)

At run time, the structure specified in the electrical system config
file is parsed and a directional graph (in the computer science sense)
is built. Each frame, the current is propagated through the system,
starting at the suppliers, flowing through the buses, and finally to
the outputs. The system follows the path of connectors laid out in
the config file and honors the state of any connector switch.

Suppliers

A supplier entry could look like the following:

<supplier>
<name>Battery 1</name>
<prop>/systems/electrical/suppliers/battery[0]</prop>
<kind>battery</kind>
<volts>24</volts>
<amps>60</amps> <!-- WAG -->

</supplier>

<name> can be anything you choose to call this entry.

<prop> is the name of a property that will be updated with the state
of this supplier.

<kind> can be "battery", "alternator", or "external".

<volts> specifies the volts of the source

<amps> specifies the amps of the source

48

Currently <volts> and <amps> are not really modeled in detail. This
is more of a place holder for the future.

For alternators, you must additionally specify:
<rpm-source>/engines/engine [0] /rpm</rpm-source>

The value of the rpm source determines if the generator is able to
produce power or not.

A bus entry could look like the following:

<bus>
<name>Essential/Cross Feed Bus</name>
<prop>/systems/electrical/outputs/bus-essential</prop>
<prop>/systems/electrical/outputs/annunciators</prop>
<prop>/systems/electrical/outputs/master-switch</prop>
</bus>

<name> is whatever you choose to call this bus

You can have an arbitrary number of <prop> entries. Each entry is the
name of a property that will be updated with the value of the current
at that bus. This allows you to wire devices directly to the bus but
does not allow you to insert a switch or circuit breaker in between.
See "Outputs" and "Connectors" if you want to do that.

Outputs

An output entry could look like the following:
<output>

<name>Starter 1 Power</name>
<prop>/systems/electrical/outputs/starter[0]</prop>

49

</output>

An output isn’t entirely unlike a bus, but it’s nice conceptually to
have a separate entity type. This enables us to specify a common set
of output property names so that other subsystems can automatically
work with any electrical system that follows the same conventions. An
output lives on the other side of a switch, so this is how you can
wire in cockpit switches to model things like fuel pump power,
avionics master switch, or any other switch on the panel.

<name> is whatever you choose to call this bus

You can have an arbitrary number of <prop> entries. Each entry is the
name of a property that will be updated with the value of the current
at that bus. This allows you to wire devices directly to the bus but
does not allow you to insert a switch or circuit breaker in between.
See "Outputs" and "Connectors" if you want to do that.

Other FlightGear subsystems can monitor the property name associated
with the various outputs to decide how to render an instrument,
whether to run the fuel pump, whether to spin a gyro, or any other
subsystem that cares about electrical power.

Connectors

An connector entry could look like the following:

<connector>
<input>Alternator 1</input>
<output>Virtual Bus 1</output>
<switch>/controls/switches/master-alt</switch>
<initial-state>off</initial-state> <!-- optional tag -->
</connector>

A connector specifies and input, and output, and any number of
switches that are wired in series. In other words, all switches need
to be true/on in order for current to get from the input to the output
of the connector.

50

<input> specifies the <name> of the input. Typically you would
specify a "supplier" or a "bus".

<output> specifies the <name> of the output. Typically you would
specify a bus or an output.

You can have an arbitrary number of <switch> entries. The switches
are wired in series so all of them need to be on (i.e. true) in order
for current to pass to the output.

Note: by default the system forces any listed switches to be true.

The assumption is that not every aircraft or cockpit may impliment
every available switch, so rather than having systems be switched off,
with no way to turn them on, we default to switched on.

This is a problem however with the starter switch which we want to be
initialized to "off". To solve this problem you can specify
<initial-state>off</initial-state> or
<initial-state>on</initial-state> Switches default to on, so you
really only need to specify this tag if you want the connector’s
switch to default to off.

The electrical system has a lot of power and flexibility to model a
variety of electrical systems. However, it is not yet perfect or
finished. One major weakness is that it doesn’t yet model degraded
battery or generator power, and it doesn’t model the '"charge" of the
batteries in case of a generator failure.

10 Fgjs

fgjs —— a small program for creating a basic FlightGear joystick
configuration

fgjs requires plib to be installed on your system. If you’ve

51

successfully installed and built FlightGear then you should be
all set

Build instructions

At this point, fgjs has only been built and tested under Linux,
so the makefile is a simple one. cd into the directory in which
the fgjs source resides and type ’make’ and, if you are lucky,
all will go well. You can e-mail me (apeden@earthlink.net) any
changes needed to make it work on other systems. It’s quite
possible that this program will become part of the regular
FlightGear package so

Running

Set up your joystick and make sure it works with js_demo from the
FlightGear distribution. Upon executing fgjs, it will prompt you
to move the control you wish to use for elevator, ailerons, etc.
Note that when being prompted for an analog control, you can skip
the current one by pressing any button and vice-versa when being
prompted for a button. You may want to do this if for, as an
example, rudder if you have only one joystick or your joystick
doesn’t have as many analog axes as FlightGear supports.

Once you’ve run with this configuration, you may wish to tune
the dead-band a bit (see fgfsrc.js) as the default, 0.02, may
be too narrow for your particular hardware/taste.

And last, but not least, this thing needs a GUI!!!! Hopefully,
the joystick handling code and interface code are separate
enough that using that a GUI version could be built using this
source as a starting point.

52

11 Flightrecorder

FlightGear Flight Recorder Mini-HOWTO

Thorsten Brehm
Started in August 2011
Last revised: 2011-09-26

FlightGear provides a customizable flight recorder capable of capturing
any selection of properties described via XML configuration files.
The recorder is currently used for the replay system.

Feature Brief

* Generic recording system, adaptable to any aircraft/data, provided that
data is accessible via the property tree. No hard-coded selections or
assumptions on properties to be recorded.

Configuration read from XML files or the property tree itself.
Interpolation method configurable per recorded/replayed signal.
Adaptable recording resolution per signal.

Multiple configurations supported.

* ¥ ¥ %

Quick Start: Basic Configuration

To configure and adapt the flight recorder, add a "/sim/flight-recorder"
section to your aircraft -set.xml file.

Example:
<sim>
<Kl== ... ==

<flight-recorder>

53

<replay-config type="int">0</replay-config>
<config n="0O"
include="/Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml">
<name type="string">My Aircraft’s Flight Recorder</name>
<!-- Custom properties -->
<signal>
<type>float</type>
<property type="string">/controls/gear/nosegear-steering-cmd-norm</property>
<interpolation>linear</interpolation>
</signal>
<!-- More custom signals here -->
</config>
</flight-recorder>

<l—= ... —=>
</sim>

Default type for each signal is "float". Default "interpolation" method
is "linear" (for float/double). Default values may be omitted. See
configuration details below.

Generic Configuration Files

Select one of the default configuration files to specify the basic
properties to be recorded. It’s not recommended to specify all
properties to be recorded individually.

The following generic files are provided:

*x /Aircraft/Generic/flightrecorder/generic-piston-propeller-4.xml
Matches propeller aircraft with 4 piston engines, 4 tanks,
3 retractable gear.
It is the same configuration that was hard-coded for the replay system
up to FlightGear 2.4.0. To provide backward compatibility this
configuration is loaded by default, unless an aircraft provides a
specific flight recorder configuration.

* /Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml
Matches propeller aircraft with 1 piston engines, 2 tanks, 3 fixed

o4

gear.

* /Aircraft/Generic/flightrecorder/generic-turboprop-2.xml
Matches turboprop aircraft with 2 turbines/propellers, 4 tanks,
3 retractable gear.

*x /Aircraft/Generic/flightrecorder/generic-jet.xml
Matches jet aircraft with 2 jet engines, 4 tanks.

* /Aircraft/Generic/flightrecorder/generic-glider.xml
Matches gliders (no engines, no tanks, single fixed gear).

*x /Aircraft/Generic/flightrecorder/generic-helicopter.xml
Matches helicopters with main and tail rotor (tested with YASim).

If none of the generic files matches your aircraft, simply use a
configuration which covers more than you need. Alternatively, copy the
contents of one of these generic files to your aircraft, and adapt as
needed (see below).

FDM experts are welcome to add more generic configuration files to
/Aircraft/Generic/flightrecorder - such as YASim-/JSBSim-specific
configurations, and configurations for other types of aircraft
(balloons, airships, ...).

Generic Components

The generic configuration files in turn include a set of generic
components. If you copy the contents of a generic file to your aircraft,
you can adapt the components to your needs. See examples.

It is not recommended to copy the contents of the _component_ files to
an aircraft though (causes too much hassle and dependencies).

Engine Selection:
* /Aircraft/Generic/flightrecorder/components/engine-jet.xml
Records properties of a single jet engine.
For multiple jet engines, use "count". Example for 4 jets:
<signals include="/Aircraft/Generic/flightrecorder/components/engine-jet.xml">
<count>4</count>

95

</signals>

* /Aircraft/Generic/flightrecorder/components/engine-piston.xml
Records properties of a single piston engine and propeller.
For multiple piston engines, use "count" (see "jet" example).

* /Aircraft/Generic/flightrecorder/components/rotor.xml
Records properties of a single helicopter rotor (tested with YASim).
To use this, provide the base property path to the rotor as "prefix".
Example recording the rotor below "/rotors/main":
<signals include="/Aircraft/Generic/flightrecorder/components/rotor.xml">
<prefix type="string">/rotors/main</prefix>
</signals>

Gear Selection:
* /Aircraft/Generic/flightrecorder/components/gear-fixed.xml
Records properties of a single non-retractable gear.
For multiple fixed gear, use "count" (see "jet" example).

*x /Aircraft/Generic/flightrecorder/components/gear-retractable.xml
Records properties of a single retractable gear.
For multiple retractable gear, use "count" (see "jet" example).

Tanks:
* /Aircraft/Generic/flightrecorder/components/tanks.xml
Records properties of a single fuel tank.
For multiple fuel tanks, use "count" (see "jet" example).

Other:

* /Aircraft/Generic/flightrecorder/components/surfaces.xml
Records properties of flight control surfaces. Include this
for aircraft (with wings). Not useful for helicopters,
balloons,

* /Aircraft/Generic/flightrecorder/components/faults-engines.xml
Records fault properties of a single engine. Only include this
if your aircraft supports fault simulation.

For multiple engines, use "count" (see "jet" example). If used,
it should be compined with piston or jet engine.

56

* /Aircraft/Generic/flightrecorder/components/environment .xml
Records properties of environment/weather (visibility,
temperature - but _not_ cloud positiom...).

* /Aircraft/Generic/flightrecorder/components/position.xml
Records properties of a the aircrafts main position (latitude,
longitude, velocities, ...).

This is the most important component. Always include this.

* /Aircraft/Generic/flightrecorder/components/controls.xml
Records most important flight controls (rudder, aileron,
elevator, ...). Always include this.

Custom Properties

When the generic or component files are not be sufficient to record or
replay aircraft-specific effects, you can add custom properties (signals
to be recorded) to the configuration.

Each signal consits of a recording type/resolution (which does _not_
need to match the actual type in the property tree!), the path to the
property and interpolation type.

Example recording some additional custom properties:
<sim>
<flight-recorder>
<config n="0"
include="/Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml">

<!-- Add custom properties here -->
<signal>
<type>float</type>
<property type="string">/controls/gear/nosegear-steering-cmd-norm</propert:
</signal>
<signal>
<type>double</type>

<interpolation>rotational-deg</interpolation>

<property type="string">/ai/model/carrier/alpha-angle-deg</property>
</signal>
<signal>

<type>bool</type>

o7

<property type="string">/controls/panel/custom-switch</property>
</signal>
</config>
</flight-recorder>
</sim>

Signal Configuration
Template:
<signal>
<type>bool</type>
<interpolation>angular-deg</interpolation>
<property type="string">/controls/panel/custom-switch</property>
</signal>

* type: The signal’s type specifies the recording resolution - not the
type of the original property. The following types are supported:

- double: 8 byte/sample

- float: 4 byte/sample (default)

- int: 4 byte/sample, integer

- int16: 2 byte/sample, integer

- int8: 1 byte/sample, integer

- bool: 1 bit/sample (yes, 1 bit. 8 bools per byte).

String type is unsupported (too expensive).

* interpolation: Specifies how values are interpolated during replay, i.e.
when replay is in slow-motion mode and more frames/second are required
than recorded, or when replaying data from the medium/long term memory.
Supported methods:

- discrete: No interpolation. Default for integer/bool types.

- linear: Standard linear interpolation. Default for float/double.
- angular-rad (or angular): Angular values in radians (0-2pi).

- angular-deg: Angular values in degrees (0-360).

* property: Path to the property to be recorded.

58

Advanced Configuration

- Multipe recorder configurations for a single aircraft are supported
(multiple "<config n=..>" sections for n=0,1,...).
Active configuration to be used for the replay system is selected via

/sim/flight-recorder/replay-config (= 0,1,...).

This can be useful for specific recorders for specific scenarios,
which should not be used by default. For example, a specific recorder
configuration could be provided which also records the position of
an aircraft carrier, of other AI aircraft,
This may also be useful for future use, i.e. to select another flight
recorded configuration for a different purpose, such as for the
multiplayer system.

- Flight recorder configuration can be adapted during run-time
(configuration is visible in the property browser below
/sim/flight-recorder). However it is necessary to reset (reinit) the
replay subsystem first - which also erases earlier recordings. It is
not possible to mix recordings of different configurations on to a
single "tape".

- Each configuration should be given a name. Useful for a (future)
selection GUI, when multiple configurations are available.

Optimizing Performance

- Recording properties consumes memory and also CPU time. A few
additional properties don’t matter much, but avoid execessive numbers.
Reduce the resolution (type) of signals to the minimum necessary to
save space.

- Use "bool" types where possible, they are most efficient.

- Avoid recording with "double" resolution (type "double"). Use "float"
instead - even if the original property in the property tree is a
"double" (almost all of them do). "float" precision is almost always
sufficient for recording/replay purposes, with few exceptions (like
latitude/longitude properties).

- Use int16/int8 for "small" integer values.

59

Recording/Replay Limits

12

end

All properties can be recorded, however, only writable properties can
be replayed. Properties marked as read-only, or tied properties not
implementing the "set" method cannot be replayed.

Replaying a property overwrites the property’s value. However, other
sources may also write to the same property - such as Nasal code,
autopilot rules etc. When multiple sources "fight" over a property’s
value then the last update "wins" - resulting in a dependency to an
unknown/random sequence. Hence, during deplay, try to disable other
sources writing to properties which were recorded and should be
replayed.

If the other source cannot be disabled, check if you’re recording the
right property. It may be better to record the input properties of the
other source instead (i.e. the inputs processed by the Nasal or
autopilot rule).

Gui

FlightGear GUI Mini-HOWTO

David Megginson
Started: 2003-01-20
Last revised: 2003-01-20

FlightGear creates its drop-down menubar and dialog boxes from XML
configuration files under $FG_ROOT/gui. This document gives a quick
explanation of how to create or modify the menubar and dialogs. The
toolkit for the FlightGear GUI is PUI, which is part of plib.

A1l of the XML files use the standard FlightGear PropertyList format.

MENUBAR

60

FlightGear reads the configuration for its menubar from
$FG_ROOT/gui/menubar.xml. The file consists of a series of top-level
elements named "menu", each of which defines on of the drop-down
menus, from left to right. Each menu contains a series of items,
representing the actual items a user can select from the menu, and
each item has a series of bindings that FlightGear will activate when
the user selects the item.

Here’s a simplified grammar:

[menubar] : menux

menu : label, item*

item : label, enabled, binding*
The bindings are standard FlightGear bindings, the same as the ones
used for the keyboard, mouse, joysticks, and the instrument panel.

Any commands allowed in those bindings are allowed here as well.

Here’s an example of a simple menubar with a "File" drop-down menu and
a single "Quit" item:

<PropertyList>

<menu>
<label>File</label>

<item>
<label>Quit</label>
<binding>
<command>exit</command>
</binding>
</item>

</PropertyList>

PUI menus do not allow advanced features like submenus or checkmarks.
The most common command to include in a menu item binding is the

61

’dialog-show’ command, which will open a user-defined dialog box as
described in the next section.

DIALOGS

The configuration files for XML dialogs use a nested structure to set
up dialog boxes. The top-level always describes a dialog box, and the
lower levels describe the groups and widgets that make it up. Here is
a simple, "hello world" dialog:

<PropertyList>
<name>hello</name>

<width>150</width>
<height>100</height>
<modal>false</modal>
<draggable>true</draggable>
<resizable>true</resizable>

<text>
<x>10</x>
<y>50</y>
<label>Hello, world</label>
<color>
<red>1.0</red>
<green>0.0</green>
<blue>0.0</blue>
</color>
</text>

<button>
<x>40</x>
<y>10</y>
<legend>Close</legend>
<binding>
<command>dialog-close</command>
</binding>

62

</button>

</PropertyList>
The dialog contains two sub-objects: a text field and a button. The
button contains one binding, which closes the active dialog when the
user clicks on the button.
Coordinates are pseudo-pixels. The screen is always assumed to be
1024x768, no matter what the actual resolution is. The origin is the
bottom left corner of the screen (or parent dialog or group); x goes

from left to right, and y goes from bottom to top.

All objects, including the top-level dialog, accept the following
properties, though they will ignore any that are not relevant:

x - the X position of the bottom left corner of the object, in
pseudo-pixels. The default is to center the dialog.

y — the Y position of the bottom left corner of the object, in
pseudo-pixels. The default is to center the dialog.

width - the width of the object, in pseudo-pixels. The default is
the width of the parent container.

height - the height of the object, in pseudo-pixels. The default is
the width of the parent container.

border - the border thickness, in pseudo-pixels. The default is 2.

color - a subgroup to specify the dialogs color:

red - specify the red color component of the color scheme.
green - specify the green color component of the color scheme.
blue - specify the blue color component of the color scheme.

alpha - specify the alpha color component of the color scheme.

font - a subgroup to specify a specific font type

name - the name of the font (excluding it’s .txf extension)
size - size of the font

slant - the slant of the font (in pseudo-pixels)

63

legend - the text legend to display in the object.
label - the text label to display near the object.

property - the name of the FlightGear property whose value will
be displayed in the object (and possibly modified through it).

binding - a FlightGear command binding that will be fired when the
user activates this object (more than one allowed) .

keynum - the key code of a key that can be used to trigger the
widget bindings via keyboard (e.g. <keynum>97</keynum> for
the "a" key.

key - like "keynum", but takes a character ("a", "A", "Shift-a",
"Shift-A", "Ctrl-a", "%", etc.), or symbolic key name ("Tab",
"Returnll = “Enter“ s IIESCH = IlEscapell B Ilspace" s “&aﬂlp; n = llandll s
Il< n , Il> n , IIFlll —_— IIF12" , IILeftll s IIUpll , IIRight n s ||Downll s
"PageUp", "PageDn", "Home", "End", "Insert"). Note that you
can’t use "<", ">", and "&" directly.

default - true if this is the default object for when the user
presses the [RETURN] key.

visible - if set to false, hides the whole widget that it is used
in, along with its children. There’s no empty space reserved
for such widgets. The "visible" property can also be used to hide
other XML groups from the layouter.

Objects may appear nested within the top-level dialog or a "group"

or a "frame" object. Here are all the object types allowed, with their
special properties:

The top-level dialog box; the name does not actually appear in the
file, since the root element is named Propertylist.

64

name - (REQUIRED) the unique name of the dialog for use with the
"dialog-show" command.

modal - true if the dialog is modal (it blocks the rest of the
program), false otherwise. The default is false.

draggable - false if the dialog is not draggable. The default is true.
resizable - false if the dialog is not resizable. The default is false.
nasal - Nasal definition block
open - Nasal script to be executed on dialog open
close - Nasal script to be executed on dialog close
A1l Nasal code runs in a dialog namespace. Nasal bindings can
directly access variables and functions defined in an <open> block.
settimer() and setlistener() functions have to be removed manually
in the <close> block if they shouldn’t remain active.
Example:
<PropertyList>
<name>sample</name>
<width>500</width>
<height>210</height>
<modal>false</modal>
<text>
</text>
<button>
</button>

</PropertyList>

65

group and frame

A group of subobjects. This object does not draw anything on the
screen, but all of its children specify their coordinates relative to
the group; using groups makes it easy to move parts of a dialog
around.

A frame is a visual representation of a group and has a border and an
adjustable background color.

Example:

<group>
<x>0</x>
<y>50</y>
<text>
</vext>
<input>
</input>
<button>
<)gﬁtton>

</group>

A simple editable text field.

Example:

66

<input>

<x>10</x>

<y>60</y>

<width>200</width>

<height>25</height>

<label>sea-level temperature (degC)</label>
<property>/environment/temperature-sea-level-degc</property>
</input>

text

A non-editable text label.
Example:

<text>
<x>10</x>
<y>200</y>
<label>Heading</label>
</text>

<text>

<x>10</x>

<y>200</y>

<label>-9.9999</1label> <!-- placeholder for width -->
<format>%-0.4f m</format>
<property>/foo/altitude</property>

</text>

checkbox

A checkbox, useful for linking to boolean properties.
Example:

<checkbox>

67

<x>150</x>

<y>200</y>

<width>12</width>

<height>12</height>

<property>/autopilot/locks/heading</property>
</checkbox>

button

A push button, useful for firing command bindings.

one-shot - true if the button should pop up again after it is

pushed, false otherwise. The default is true.

<button>
<x>0</x>
<y>0</y>
<legend>0K</legend>
<binding>
<command>dialog-apply</command>
</binding>
<binding>
<command>dialog-close</command>
</binding>
<default>true</default>
</button>

A pop-up list of selections.

value - one of the selections available for the combo.

any number of "value" fields.

68

There may be

Example:

<combo>

<x>10</x>

<y>50</y>

<width>200</width>
<height>25</height>
<property>/environment/clouds/layer [0] /type</property>
<value>clear</value>
<value>mostly-sunny</value>
<value>mostly-cloudy</value>
<value>overcast</value>
<value>cirrus</value>
</combo>

list

like "combo", but displays all values in a scrollable list box with
slider on the right side. Updates the <property> to the selected
entry. On <dialog-update> re-scans the <value> nodes and updates
the list.

airport-list

like "list", but fills the list automatically with all airports known
to FlightGear. Calls bindings on airport selection and returns the
selected entry in <property> on dialog-apply. Interprets <property>
as search term on dialog-update.

property-list

69

like "list", but shows a list of properties from the global property
tree. The widget handles navigation in the property tree. It calls its
bindings on property selection and returns the path of the selected
property in <property> on dialog-apply. It’s up to the caller to check
if the path belongs to a dir node or a value node. The widget shows

the contents of the dir property given in <property> on dialog-apply.

It does *not* handle setting of property values! Clicking on some
entries with the "control" or "shift" key pressed has a special meaning:

Ctrl +
o -> toggle verbose mode (shows flags, listeners, dir-values)
o -> go to root node
(bool) -> toggle bool value

Shift +
R -> dump contents of that tree level to the terminal

The flags printed after the node type have the following meaning:

r -> read protected
W -> write protected
R -> +trace read operations (in the terminal window)
W -> +trace write operations
A -> archive bit set
U -> user archive bit set
P -> preserved bit set (value is preserved on sim-reset)
T -> property is "tied"
Ln -> number of listeners attached to this node
select

A box with arrow buttons that cycle through a list of values.
Example:

<select>

70

<x>10</x>
<y>50</y>
<width>200</width>
<height>25</height>
<property>/sim/aircraft</property>
<value>bo105</value>
<value>ufo</value>

</select>

slider

A horizontal or vertical slider for setting a value.

vertical - true if the slider should be vertical, false if it should
be horizontal. The default is false.

min - the minimum value for the slider. The default is 0.0.
max - the maximum value for the slider. The default is 1.0.
step - set to non-null if slider should move in steps. The default is 0.0 (off).
pagestep - set to non-null to enable page-stepping. The default is 0.0 (off).
fraction - size of the slider handle. Range: 0..1. The default is 0.0 (minimum).
Example:
<slider>
<x>10</x>
<y>50</y>
<width>200</width>
<property>/environment/visibility-m</property>
<min>5</min>

<max>50000</max>
</slider>

71

dial

A circular dial for choosing a direction.

wrap - true if the dial should wrap around, false otherwise. The
default is true.

min - the minimum value for the dial. The default is 0.0.
max — the maximum value for the dial. The default is 1.0.
Example:

<dial>
<x>10</x>
<y>50</y>
<width>20</width>
<property>/environment/wind-from-direction-deg</property>
<min>0</min>
<max>360</max>

</dial>

The text will be retrieved/buffered from/within a specified
property tree, like:

<textbox>
<!-- position —-—>
<x>100</x>
<y>100</y>

<!-- dimensions -->

<width>200</width>
<height>400</height>

72

<property>/gui/path-to-text-node/contents</property>

<slider>15</slider> <!-