local changes. People are used to modifying this file, and seem helpless
without it. Further explanations will be added to README.Joystick.html.
The dummy entry is necessary because EasyXML aborts without at least one
entry, and segfaults without <PropertyList> entry.
This adds a TACAN instrument to the inventory. Range and bearing are calculated
to the TACAN or VORTAC beacon selected by means of the Channel Selector in the E
quipment/Radio pull-down menu.
A TACAN beacon has also been added to the aircraft carrier Nimitz (channel #029Y
).
Changes
=======
- shadowvolume.cxx, renderer.cxx :
- reduced the polygon offset a bit to eliminate some artifact ;
- changed again the cleanup code for objects inside a tile because it could crash on rare occasion ;
- the culling of shadow casters has been rewritten to traverse the scene graph, it should be
a bit faster when there is a lot of objects ;
- the range selector was not correctly handled, sometimes the wrong LOD was casting shadows.
- added the option to display aircraft's transparent objects after the shadows, this will
reduce the problem of shadows being hidden by the transparent object (propeller disk,
rotor, etc). A side effect is that aircraft's transparent objects won't receive shadows
anymore. This is usually a good thing except when the aircraft use a 'transparent'
texture where it should not. A transparent texture in the plib context is a texture
with an alpha channel or a material with alpha <= 0.99.
- model.cxx, animation.cxx, shadowvolume.cxx :
- added an optional <condition> under the <noshadow> animation
- tower.cxx
- correct a rare bug where all occurences of the aircraft are not deleted from the
departure list causing a crash in FGTower::CheckDepartureList function.
Changes
=======
New volumetric shadows for FlightGear.
There is now two new checkboxes in the rendering dialog to enable/disable shadows
for the user aircraft and for static scenery objects (ie those defined in the .stg files).
AI and random objects are not handled for the moment.
known bugs
==========
- ghost objects
This is another update for the cloud code, a lot of lines but this time I have started to add the doxygen doc.
Misc
====
- corrected a bug when RTT is not available, the current rendering context was
altered
- if RTT is not available then 3d clouds are not drawn at all
- impostors lighting is now recomputed when the sun changes position
- distant objects are no more seen in front of clouds
- blending of distant clouds is a bit better now
- litle optimization of code (uses a less cpu time)
- use layer wind speed and direction (no more hardcoded wind)
- fov is no more hardcoded
Changes
=======
- clouds (cu only) are dissipating/reforming (experimental)
- compute a turbulence factor that depends on surrounding clouds and type of
clouds (experimental)
- clouds shapes are defined in cloudlayers.xml
- type of clouds present in a layer is also defined in cloudlayers.xml
- cloud layers are generated from metar and other misc. data (in progress)
- added a rain effect around the viewer (enabled in the rendering dialog and
when the metar property says so)
- added a lightning effect (enabled in the rendering dialog) : cb clouds spawn
new lightnings
- added a dialog to select from different weather source : metar/property,
a 'fair weather' environment and a 'thunderstorm' environment.
There are two <dme> entries in preferences.xml, resulting in two dme branches
under /instrumentation/ (dme[0] and dme[1]). The serviceable property is only
set for the second entry (dme[1]), and that one is not connected to the dme
module. Solution: Remove the first <dme> entry, and set the index explicitly
to 0 for the remaining <dme> entry.
Here are files to get automated contrails working. I've set up contrails for
the 737, using my simple, untextured contrail model. Vivian has made another
contrail model, but I'm still trying to get his to work. I'm hoping others
will try to make contrail models also.
Here's some code that defines a top to thermals. When the top of a thermal is
reached the strength is phased-out linearly over the next 100 feet of
altitude. At first I tried just capping the thermal at the top, but the
change in thermal strength was too fast for the FDM to handle well.
Included is a new version of the thermal scenario that includes a top
(height-msl) to the thermal. The default value is 5000 feet.
After applying the attached patches (based on latest CVS) you should
have a new option available within your version that should also
show up using fgfs --help, the syntax is:
fgfs --min-status={level} --show-aircraft
whereas "level" can be anything between
"alpha","beta","early-production" and "production"
Of course running something like
fgfs --min-status=alpha --show-aircraft
should not return any aircraft right now, as none of the
current aircraft definition files in your base-package is using the
required
<status></status>
tag - but you can easily give it a try by adding something like
<status>alpha</status>
The tag should be placed as a sub-tag within <sim> - so directly behind
the <description> tag would be just fine and straight-forward.
This will modify menubar.cxx/hxx so that it exports the
entire menubar (from menubar.xml) to the property tree, so that it can
now be changed dynamically using Nasal's setprop() instruction and
afterwards running a newly added fgcommand to update the menubar
based on those changes using the appropriate menubar path within
the property tree.
By default the menubar from menubar.xml will be stored within:
/sim/menubar/default
Erik:
I have moved the loading of menubar.xml into preferences.xml and
made sure that the menubar is destroyed every time a new menubar
is created.
Instrumentation and systems are now configureable from xml files. The two
generic configurations generic-systems.xml and generic-instrumentation.xml
configures the systems and instrumentation as it was hardcoded. You can
override the generic configurations in a similar way as you override the
autopilot configuration.
I've included the latest fixes to the Traffic Manager/AI flightplan generation
code. Most of the code changes are in AIFllightplan.cxx. This is the code
that runs without depending on predefined FlightPlans in
#FG_ROOT/Data/AI/Flightplans.i
As suggested by Dave, I've also added a new property in
preferences.xml: /sim/traffic-manager/enabled, which is used to control
whether or not the traffic manager is active.
I'm still working on a few more 737 traffic patterns, those are going to take
a little longer, so I didn't want to wait sending in this code.
Finally, I haven't put much effort into ensuring "aeronautical correctness" in
this version yet. The code works on my system, but what the AI plane do may
actaully be quite rediculous. But I'd like to leave that for the next
version.
Here's some new AI stuff.
1) AI objects must now be defined in a scenario file, not in preferences.xml
or a *-set file. (Of course this doesn't prevent objects from being created
dynamically, as with Durk's traffic manager).
2) A new demo_scenario file is attached. It creates 3 aircraft, a sailboat,
and a thunderstorm.
3) Objects without flightplans live forever.
4) FGAIShip::ProcessFlightplan() is not yet implemented.
5) preferences.xml should now define only <enabled> and <scenario>