Add clickable range selection for the radar and wxradar. Right
now it is clickable only between 20 and 40 mile ranges, which should work for
most uses.
OV10-jsbsim-set.xml has many changes. It creates a thunderstorm over
woodside VOR. It removes the lowest cloud layer so that the storm can be
seen. It sets the surface wind speed to zero, which may help stop the
"drifting left" complaints. It sets the radar range to 40 miles.
The weather radar instrument is corrected.
The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale. Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.
The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology. With just a little more work I can get a HUD
marker. All I need to do there is make a bank angle adjustment to the
current values.
This works great with one target. For two or more targets the radar
instrument will have to know the numbering of the aircraft model properties.
This isn't implemented yet.
David Culp:
I couldn't stop. Here's a better radar instrument. It has:
1) range select knob 20 and 40 nm (not clickable.. yet)
2) target altitude readout at lower right
3) target disappears when range exceeds 43 nm
4) range ring values now are read from instrumentation/radar/range
5) instrumentation/radar/range is preset in the *-set.xml file to 40 nm
The next step would be a clickable range selection. The problem here is that
the instrument currently displays the "blip" only if the target's range is
less then 43 nm. If the range scale is decreased to 20 nm, then the "blip"
will show past the edges of the instrument. I might need to make another
instrument for the 20 nm scale to make that work.
controls in the cockpit vs. which wheels they apply to. FlightGear now
sets /controls/gear/brake-left, /controls/gear/brake-right, and
/controls/gear/brake-parking. It should be up to the FDM to sort out
which wheels under which circumstances are affected by these controls
and ultimately what happens to the physical motion of the aircraft.
These patches add a clock instrument, which allows to model failure ("serviceable") and to adjust the time independently of the system time (defaults to GMT). The main incentive is to make the p51d clock work and adjustable via the knob.
o Offers a time string ("12:03:15") for the LCD or for LED
clocks, or an empty string in case of failure/power off. The
instrument assumes that digital clocks are battery buffered,
so they will be updated even if there's nothing on the display.
o Offers the number of seconds since midnight for analog
clocks, like in the p51d. This number is not increased
if !serviceable. So the clock will stand still and continue
where it stopped when it's serviceable again.
I did not consider voltage yet, because the Mustang's clock will need a lot more current than the LCD clock. The instrument is updated 4 times per second but returns immediately if neither time nor offset changed. The function getGMTString() in fg_props.cxx could be removed after applying these patches.
- HSI GS needles shouldn't disappear when they hit their limits, only when
there is no GS signal.
- Make vac/amp gauge driven by new minimalistic amp model.
- Update digital clock face color to look more "LCD-ish" based on a real
C172-S cockpit photo.
- Add an OAT gauge to the old C172 2d panel.
support under /radios/.
The display now goes dark when the switch is turned off.
The switch position is now handled entirely within the XML -- the C++
code is generic, so that other DME receiver types can also be
modelled.
Here're some updates for some of the instruments, the TSR2 and the B52.
The instruments are just parameterised/non-specific versions of the engine
and fuel gauges. The old gauges will still be used by the a10s and the sea
hawks until I get them done.
There're a couple of tweaks to the tsr2 yasim config and amendments to the
model file to change the angle at which the airbrakes operate, correct the
direction that the nose gear retracts/extends and to rotate the main-gear
carts during retraction/extention. There're also new panels, using the new
instruments.
The b52 yasim config has some big changes due to finding some more info i.e.
wing incidence of 6 degrees, fuel capacities and aileron changes (removed
from G & H versions!). It's now based on an 'F' model and I've put some
comments in the yasim config about it. The b52-readme.txt includes a
suggested method on getting airborne;). I've included an amended model -
B52-F.3ds, which is the default in the new model file, and a couple of panels.
I'm quite pleased with the b52 - the take-offs resemble the photographs I've
seen and I think I've got reasonable values where I've had to guess at stuff,
but the results from the yasim solver look as through the model is
approaching the limits of acceptability for yasim. By this I mean that the
model is probably a bit dodgy, not that the yasim solver is limited.