WS30: Add Texture rotation to ALS shader
This commit is contained in:
parent
9c556e5425
commit
d887e4b22d
1 changed files with 101 additions and 105 deletions
|
@ -15,6 +15,7 @@ uniform sampler2DArray atlas;
|
|||
uniform sampler1D dimensionsArray;
|
||||
uniform sampler1D diffuseArray;
|
||||
uniform sampler1D specularArray;
|
||||
uniform sampler2D perlin;
|
||||
|
||||
varying float yprime_alt;
|
||||
varying float mie_angle;
|
||||
|
@ -56,13 +57,7 @@ float luminance(vec3 color)
|
|||
|
||||
void main()
|
||||
{
|
||||
|
||||
// The Landclass for this particular fragment. This can be used to
|
||||
// index into the atlas textures.
|
||||
int lc = int(texture2D(landclass, gl_TexCoord[0].st).g * 255.0 + 0.5);
|
||||
|
||||
|
||||
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
||||
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
||||
// this is taken from default.frag
|
||||
vec3 n;
|
||||
float NdotL, NdotHV, fogFactor;
|
||||
|
@ -72,10 +67,13 @@ void main()
|
|||
vec4 fragColor;
|
||||
vec4 specular = vec4(0.0);
|
||||
float intensity;
|
||||
|
||||
int lc = int(texture2D(landclass, gl_TexCoord[0].st).g * 255.0 + 0.5);
|
||||
float mat_index = float(lc)/512.0;
|
||||
float mat_shininess = texture(dimensionsArray, mat_index).z;
|
||||
vec4 mat_diffuse = texture(diffuseArray, mat_index);
|
||||
vec4 mat_specular = texture(specularArray, mat_index);
|
||||
|
||||
vec4 color = mat_diffuse;
|
||||
|
||||
float effective_scattering = min(scattering, cloud_self_shading);
|
||||
|
@ -85,8 +83,8 @@ void main()
|
|||
|
||||
// If gl_Color.a == 0, this is a back-facing polygon and the
|
||||
// normal should be reversed.
|
||||
n = (2.0 * gl_Color.a - 1.0) * normal;
|
||||
n = normalize(n);
|
||||
//n = (2.0 * gl_Color.a - 1.0) * normal;
|
||||
n = normalize(normal);
|
||||
|
||||
|
||||
NdotL = dot(n, lightDir);
|
||||
|
@ -109,46 +107,56 @@ void main()
|
|||
|
||||
// Different textures have different have different dimensions.
|
||||
// Dimensions array is scaled to fit in [0...1.0] in the texture1D, so has to be scaled back up here.
|
||||
|
||||
// The Landclass for this particular fragment. This can be used to
|
||||
// index into the atlas textures.
|
||||
vec2 atlas_dimensions = 10000.0 * texture(dimensionsArray, float(lc)/512.0).st;
|
||||
vec2 atlas_scale = vec2(tile_width / atlas_dimensions.s, tile_height / atlas_dimensions.t );
|
||||
texel = texture(atlas, vec3(atlas_scale * gl_TexCoord[0].st, lc));
|
||||
vec2 st = atlas_scale * gl_TexCoord[0].st;
|
||||
|
||||
// Rotate texture using the perlin texture as a mask to reduce tiling
|
||||
if (step(0.5, texture(perlin, atlas_scale * gl_TexCoord[0].st / 8.0).r) == 1.0) {
|
||||
st = vec2(atlas_scale.s * gl_TexCoord[0].t, atlas_scale.t * gl_TexCoord[0].s);
|
||||
}
|
||||
|
||||
if (step(0.5, texture(perlin, - atlas_scale * gl_TexCoord[0].st / 16.0).r) == 1.0) {
|
||||
st = -st;
|
||||
}
|
||||
|
||||
texel = texture(atlas, vec3(st, lc));
|
||||
|
||||
fragColor = color * texel + specular;
|
||||
|
||||
// here comes the terrain haze model
|
||||
// here comes the terrain haze model
|
||||
float delta_z = hazeLayerAltitude - eye_alt;
|
||||
float dist = length(relPos);
|
||||
|
||||
float mvisibility = min(visibility,avisibility);
|
||||
|
||||
if (dist > 0.04 * mvisibility)
|
||||
{
|
||||
|
||||
alt = eye_alt;
|
||||
|
||||
float transmission;
|
||||
float vAltitude;
|
||||
float delta_zv;
|
||||
float H;
|
||||
float distance_in_layer;
|
||||
float transmission_arg;
|
||||
|
||||
// angle with horizon
|
||||
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
|
||||
|
||||
|
||||
float delta_z = hazeLayerAltitude - eye_alt;
|
||||
float dist = length(relPos);
|
||||
|
||||
float mvisibility = min(visibility,avisibility);
|
||||
|
||||
if (dist > 0.04 * mvisibility)
|
||||
{
|
||||
|
||||
alt = eye_alt;
|
||||
|
||||
|
||||
float transmission;
|
||||
float vAltitude;
|
||||
float delta_zv;
|
||||
float H;
|
||||
float distance_in_layer;
|
||||
float transmission_arg;
|
||||
|
||||
// angle with horizon
|
||||
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
|
||||
|
||||
|
||||
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
|
||||
|
||||
if (delta_z > 0.0) // we're inside the layer
|
||||
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
|
||||
if (delta_z > 0.0) // we're inside the layer
|
||||
{
|
||||
if (ct < 0.0) // we look down
|
||||
{
|
||||
distance_in_layer = dist;
|
||||
vAltitude = min(distance_in_layer,mvisibility) * ct;
|
||||
delta_zv = delta_z - vAltitude;
|
||||
delta_zv = delta_z - vAltitude;
|
||||
}
|
||||
else // we may look through upper layer edge
|
||||
{
|
||||
|
@ -156,10 +164,10 @@ if (delta_z > 0.0) // we're inside the layer
|
|||
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
|
||||
else {distance_in_layer = dist;}
|
||||
vAltitude = min(distance_in_layer,visibility) * ct;
|
||||
delta_zv = delta_z - vAltitude;
|
||||
delta_zv = delta_z - vAltitude;
|
||||
}
|
||||
}
|
||||
else // we see the layer from above, delta_z < 0.0
|
||||
else // we see the layer from above, delta_z < 0.0
|
||||
{
|
||||
H = dist * -ct;
|
||||
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
|
||||
|
@ -175,99 +183,87 @@ if (delta_z > 0.0) // we're inside the layer
|
|||
delta_zv = vAltitude;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ground haze cannot be thinner than aloft visibility in the model,
|
||||
// so we need to use aloft visibility otherwise
|
||||
// ground haze cannot be thinner than aloft visibility in the model,
|
||||
// so we need to use aloft visibility otherwise
|
||||
transmission_arg = (dist-distance_in_layer)/avisibility;
|
||||
|
||||
|
||||
transmission_arg = (dist-distance_in_layer)/avisibility;
|
||||
|
||||
|
||||
float eqColorFactor;
|
||||
float eqColorFactor;
|
||||
|
||||
|
||||
|
||||
if (visibility < avisibility)
|
||||
if (visibility < avisibility)
|
||||
{
|
||||
transmission_arg = transmission_arg + (distance_in_layer/visibility);
|
||||
// this combines the Weber-Fechner intensity
|
||||
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
|
||||
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
|
||||
// this combines the Weber-Fechner intensity
|
||||
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
|
||||
}
|
||||
|
||||
transmission = fog_func(transmission_arg, alt);
|
||||
|
||||
// there's always residual intensity, we should never be driven to zero
|
||||
if (eqColorFactor < 0.2) {eqColorFactor = 0.2;}
|
||||
|
||||
float lightArg = (terminator-yprime_alt)/100000.0;
|
||||
vec3 hazeColor = get_hazeColor(lightArg);
|
||||
|
||||
// now dim the light for haze
|
||||
eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt);
|
||||
|
||||
// Mie-like factor
|
||||
if (lightArg < 10.0)
|
||||
{intensity = length(hazeColor);
|
||||
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
||||
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
||||
}
|
||||
|
||||
// high altitude desaturation of the haze color
|
||||
|
||||
intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
|
||||
|
||||
// blue hue of haze
|
||||
|
||||
hazeColor.x = hazeColor.x * 0.83;
|
||||
hazeColor.y = hazeColor.y * 0.9;
|
||||
|
||||
|
||||
transmission = fog_func(transmission_arg, alt);
|
||||
// additional blue in indirect light
|
||||
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
|
||||
intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
|
||||
|
||||
// there's always residual intensity, we should never be driven to zero
|
||||
if (eqColorFactor < 0.2) {eqColorFactor = 0.2;}
|
||||
// change haze color to blue hue for strong fogging
|
||||
//intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
|
||||
|
||||
|
||||
float lightArg = (terminator-yprime_alt)/100000.0;
|
||||
vec3 hazeColor = get_hazeColor(lightArg);
|
||||
// reduce haze intensity when looking at shaded surfaces, only in terminator region
|
||||
|
||||
float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
|
||||
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
|
||||
|
||||
// don't let the light fade out too rapidly
|
||||
lightArg = (terminator + 200000.0)/100000.0;
|
||||
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
|
||||
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
|
||||
hazeColor *= eqColorFactor * eShade;
|
||||
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
|
||||
|
||||
// now dim the light for haze
|
||||
eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt);
|
||||
// determine the right mix of transmission and haze
|
||||
|
||||
// Mie-like factor
|
||||
|
||||
if (lightArg < 10.0)
|
||||
{intensity = length(hazeColor);
|
||||
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
||||
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
||||
fragColor.rgb = mix(hazeColor, fragColor.rgb,transmission);
|
||||
}
|
||||
|
||||
// high altitude desaturation of the haze color
|
||||
fragColor.rgb = filter_combined(fragColor.rgb);
|
||||
|
||||
intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
|
||||
|
||||
// blue hue of haze
|
||||
|
||||
hazeColor.x = hazeColor.x * 0.83;
|
||||
hazeColor.y = hazeColor.y * 0.9;
|
||||
|
||||
|
||||
// additional blue in indirect light
|
||||
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
|
||||
intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
|
||||
|
||||
// change haze color to blue hue for strong fogging
|
||||
//intensity = length(hazeColor);
|
||||
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
|
||||
|
||||
|
||||
// reduce haze intensity when looking at shaded surfaces, only in terminator region
|
||||
|
||||
float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
|
||||
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
|
||||
|
||||
|
||||
|
||||
|
||||
// don't let the light fade out too rapidly
|
||||
lightArg = (terminator + 200000.0)/100000.0;
|
||||
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
|
||||
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
|
||||
hazeColor *= eqColorFactor * eShade;
|
||||
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
|
||||
|
||||
// determine the right mix of transmission and haze
|
||||
|
||||
fragColor.rgb = mix(hazeColor, fragColor.rgb,transmission);
|
||||
}
|
||||
|
||||
fragColor.rgb = filter_combined(fragColor.rgb);
|
||||
|
||||
gl_FragColor = fragColor;
|
||||
gl_FragColor = fragColor;
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue