1
0
Fork 0

WS30: Improved material atlas

Add
- texture size
- shininess
- diffuse
- specular

from material.xml into the fragment shader via sampler1D.
This commit is contained in:
Stuart Buchanan 2020-12-08 21:15:13 +00:00
parent 1052addd23
commit ba89f4c153
3 changed files with 268 additions and 60 deletions

View file

@ -19,45 +19,7 @@
</emissive> </emissive>
<shininess>1.2</shininess> <shininess>1.2</shininess>
</material> </material>
<texture n="2">
<image>Textures/Terrain/city1.png</image>
<type>2d</type>
<filter>linear-mipmap-linear</filter>
<!-- also repeat -->
<wrap-s>repeat</wrap-s>
<wrap-t>repeat</wrap-t>
<!--
<wrap-r>clamp-to-border</wrap-r>
-->
<!-- float, signed-integer, integer -->
<internal-format>normalized</internal-format>
</texture>
<texture n="3">
<image>Textures/Terrain/forest.png</image>
<type>2d</type>
<filter>linear-mipmap-linear</filter>
<!-- also repeat -->
<wrap-s>repeat</wrap-s>
<wrap-t>repeat</wrap-t>
<!--
<wrap-r>clamp-to-border</wrap-r>
-->
<!-- float, signed-integer, integer -->
<internal-format>normalized</internal-format>
</texture>
<texture n="4">
<image>Textures/Terrain/water.png</image>
<type>2d</type>
<filter>linear-mipmap-linear</filter>
<!-- also repeat -->
<wrap-s>repeat</wrap-s>
<wrap-t>repeat</wrap-t>
<!--
<wrap-r>clamp-to-border</wrap-r>
-->
<!-- float, signed-integer, integer -->
<internal-format>normalized</internal-format>
</texture>
<texture n="10"> <texture n="10">
<image>Textures/Terrain/snow3.png</image> <image>Textures/Terrain/snow3.png</image>
<type>2d</type> <type>2d</type>
@ -199,6 +161,11 @@
<display_ysize> <display_ysize>
<use>/sim/startup/ysize</use> <use>/sim/startup/ysize</use>
</display_ysize> </display_ysize>
<!--
<tile_width>
<use>/sim/rendering/texture-factor</use>
</tile_width>
-->
<view_pitch_offset> <view_pitch_offset>
<use>/sim/current-view/pitch-offset-deg</use> <use>/sim/current-view/pitch-offset-deg</use>
</view_pitch_offset> </view_pitch_offset>
@ -584,7 +551,7 @@
</texture-unit> </texture-unit>
<program> <program>
<vertex-shader>Shaders/generic-ALS-base.vert</vertex-shader> <vertex-shader>Shaders/ws30.vert</vertex-shader>
<vertex-shader>Shaders/shadows-include.vert</vertex-shader> <vertex-shader>Shaders/shadows-include.vert</vertex-shader>
<fragment-shader>Shaders/ws30.frag</fragment-shader> <fragment-shader>Shaders/ws30.frag</fragment-shader>
<fragment-shader>Shaders/hazes.frag</fragment-shader> <fragment-shader>Shaders/hazes.frag</fragment-shader>
@ -758,18 +725,18 @@
<value type="int">1</value> <value type="int">1</value>
</uniform> </uniform>
<uniform> <uniform>
<name>city</name> <name>dimensionsArray</name>
<type>sampler-2d</type> <type>sampler-1d</type>
<value type="int">2</value> <value type="int">2</value>
</uniform> </uniform>
<uniform> <uniform>
<name>forest</name> <name>diffuseArray</name>
<type>sampler-2d</type> <type>sampler-1d</type>
<value type="int">3</value> <value type="int">3</value>
</uniform> </uniform>
<uniform> <uniform>
<name>water</name> <name>specularArray</name>
<type>sampler-2d</type> <type>sampler-1d</type>
<value type="int">4</value> <value type="int">4</value>
</uniform> </uniform>
<uniform> <uniform>

View file

@ -10,13 +10,11 @@ varying vec4 diffuse_term;
varying vec3 normal; varying vec3 normal;
varying vec3 relPos; varying vec3 relPos;
uniform sampler2D landclass; uniform sampler2D landclass;
uniform sampler2DArray atlas; uniform sampler2DArray atlas;
//uniform sampler2D city; uniform sampler1D dimensionsArray;
//uniform sampler2D forest; uniform sampler1D diffuseArray;
//uniform sampler2D water; uniform sampler1D specularArray;
varying float yprime_alt; varying float yprime_alt;
varying float mie_angle; varying float mie_angle;
@ -59,17 +57,26 @@ float luminance(vec3 color)
void main() void main()
{ {
// The Landclass for this particular fragment. This can be used to
// index into the atlas textures.
int lc = int(texture2D(landclass, gl_TexCoord[0].st).g * 255.0 + 0.5);
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
// this is taken from default.frag // this is taken from default.frag
vec3 n; vec3 n;
float NdotL, NdotHV, fogFactor; float NdotL, NdotHV, fogFactor;
vec4 color = gl_Color;
vec3 lightDir = gl_LightSource[0].position.xyz; vec3 lightDir = gl_LightSource[0].position.xyz;
vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz;
vec4 texel; vec4 texel;
vec4 fragColor; vec4 fragColor;
vec4 specular = vec4(0.0); vec4 specular = vec4(0.0);
float intensity; float intensity;
float mat_index = float(lc)/512.0;
float mat_shininess = texture(dimensionsArray, mat_index).z;
vec4 mat_diffuse = texture(diffuseArray, mat_index);
vec4 mat_specular = texture(specularArray, mat_index);
vec4 color = mat_diffuse;
float effective_scattering = min(scattering, cloud_self_shading); float effective_scattering = min(scattering, cloud_self_shading);
@ -81,13 +88,14 @@ void main()
n = (2.0 * gl_Color.a - 1.0) * normal; n = (2.0 * gl_Color.a - 1.0) * normal;
n = normalize(n); n = normalize(n);
NdotL = dot(n, lightDir); NdotL = dot(n, lightDir);
if (NdotL > 0.0) { if (NdotL > 0.0) {
float shadowmap = getShadowing(); float shadowmap = getShadowing();
color += diffuse_term * NdotL * shadowmap; color += diffuse_term * NdotL * shadowmap;
NdotHV = max(dot(n, halfVector), 0.0); NdotHV = max(dot(n, halfVector), 0.0);
if (gl_FrontMaterial.shininess > 0.0) if (mat_shininess > 0.0)
specular.rgb = (gl_FrontMaterial.specular.rgb specular.rgb = (mat_specular.rgb
* light_specular.rgb * light_specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess) * pow(NdotHV, gl_FrontMaterial.shininess)
* shadowmap); * shadowmap);
@ -98,13 +106,13 @@ void main()
// is closer to what the OpenGL fixed function pipeline does. // is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0); color = clamp(color, 0.0, 1.0);
int lc = int(texture2D(landclass, gl_TexCoord[0].st).b * 255.0 + 0.5);
//vec2 st = mod(gl_TexCoord[0].st, 0.125); // mod to 1/8 of the space
//st.s = st.s + 0.125 * mod(lc, 8);
//st.y = st.y + 0.125 * int(lc/8);
texel = texture(atlas, vec3(gl_TexCoord[0].st, lc));
//texel = texture2D(texture, gl_TexCoord[0].st); // Different textures have different have different dimensions.
// Dimensions array is scaled to fit in [0...1.0] in the texture1D, so has to be scaled back up here.
vec2 atlas_dimensions = 10000.0 * texture(dimensionsArray, float(lc)/512.0).st;
vec2 atlas_scale = vec2(tile_width / atlas_dimensions.s, tile_height / atlas_dimensions.t );
texel = texture(atlas, vec3(atlas_scale * gl_TexCoord[0].st, lc));
fragColor = color * texel + specular; fragColor = color * texel + specular;
// here comes the terrain haze model // here comes the terrain haze model

233
Shaders/ws30.vert Normal file
View file

@ -0,0 +1,233 @@
// WS30 VERTEX SHADER
// -*-C++-*-
#version 120
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Colors are not assigned in this shader, as they will come from
// the landclass lookup in the fragment shader.
// Haze part added by Thorsten Renk, Oct. 2011
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
attribute vec2 orthophotoTexCoord;
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec4 diffuse_term;
varying vec3 normal;
varying vec3 relPos;
varying vec2 orthoTexCoord;
varying float yprime_alt;
varying float mie_angle;
uniform int colorMode;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt;
uniform float avisibility;
uniform float visibility;
uniform float overcast;
uniform float ground_scattering;
uniform float moonlight;
void setupShadows(vec4 eyeSpacePos);
// This is the value used in the skydome scattering shader - use the same here for consistency?
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float earthShade;
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
//x = x - 0.5;
// use the asymptotics to shorten computations
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
void main()
{
vec4 light_diffuse;
vec4 light_ambient;
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;
//float yprime_alt;
float yprime;
float lightArg;
float intensity;
float vertex_alt;
float scattering;
// this code is copied from default.vert
//vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
gl_Position = ftransform();
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
orthoTexCoord = orthophotoTexCoord;
normal = gl_NormalMatrix * gl_Normal;
// here start computations for the haze layer
// we need several geometrical quantities
// first current altitude of eye position in model space
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
// and relative position to vector
relPos = gl_Vertex.xyz - ep.xyz;
// unfortunately, we need the distance in the vertex shader, although the more accurate version
// is later computed in the fragment shader again
float dist = length(relPos);
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
vertex_alt = max(gl_Vertex.z,100.0);
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
// branch dependent on daytime
if (terminator < 1000000.0) // the full, sunrise and sunset computation
{
// establish coordinates relative to sun position
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
// yprime is the distance of the vertex into sun direction
yprime = -dot(relPos, lightHorizon);
// this gets an altitude correction, higher terrain gets to see the sun earlier
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
// two times terminator width governs how quickly light fades into shadow
// now the light-dimming factor
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
// parametrized version of the Flightgear ground lighting function
lightArg = (terminator-yprime_alt)/100000.0;
// directional scattering for low sun
if (lightArg < 10.0)
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
else
{mie_angle = 1.0;}
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
light_diffuse.a = 1.0;
light_diffuse = light_diffuse * scattering;
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
// correct ambient light intensity and hue before sunrise
if (earthShade < 0.5)
{
//light_ambient = light_ambient * (0.7 + 0.3 * smoothstep(0.2, 0.5, earthShade));
intensity = length(light_ambient.xyz);
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.8,earthShade) ));
light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
intensity = length(light_diffuse.xyz);
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.7,earthShade) ));
}
// the haze gets the light at the altitude of the haze top if the vertex in view is below
// but the light at the vertex if the vertex is above
vertex_alt = max(vertex_alt,hazeLayerAltitude);
if (vertex_alt > hazeLayerAltitude)
{
if (dist > 0.8 * avisibility)
{
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else
{
vertex_alt = hazeLayerAltitude;
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else // the faster, full-day version without lightfields
{
//vertex_alt = max(gl_Vertex.z,100.0);
earthShade = 1.0;
mie_angle = 1.0;
if (terminator > 3000000.0)
{light_diffuse = vec4 (1.0, 1.0, 1.0, 0.0);
light_ambient = vec4 (0.33, 0.4, 0.5, 0.0); }
else
{
lightArg = (terminator/100000.0 - 10.0)/20.0;
light_diffuse.b = 0.78 + lightArg * 0.21;
light_diffuse.g = 0.907 + lightArg * 0.091;
light_diffuse.r = 0.904 + lightArg * 0.092;
light_diffuse.a = 1.0;
light_ambient.r = 0.316 + lightArg * 0.016;
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
}
light_diffuse = light_diffuse * scattering;
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
// default lighting based on texture and material using the light we have just computed
diffuse_term = light_diffuse;
vec4 constant_term = (gl_LightModel.ambient + light_ambient);
// Another hack for supporting two-sided lighting without using
// gl_FrontFacing in the fragment shader.
gl_FrontColor.rgb = constant_term.rgb; gl_FrontColor.a = 1.0;
gl_BackColor.rgb = constant_term.rgb; gl_BackColor.a = 0.0;
setupShadows(gl_ModelViewMatrix * gl_Vertex);
}