backup commit
This commit is contained in:
parent
daeea22999
commit
0cc150b4d7
6 changed files with 472 additions and 1 deletions
|
@ -10,6 +10,13 @@
|
|||
<height>screen</height>
|
||||
<format>rgba8</format>
|
||||
</buffer>
|
||||
<buffer>
|
||||
<name>final</name>
|
||||
<type>2d</type>
|
||||
<width>screen</width>
|
||||
<height>screen</height>
|
||||
<format>rgba8</format>
|
||||
</buffer>
|
||||
<buffer>
|
||||
<name>sun-shadowmap-atlas</name>
|
||||
<type>2d</type>
|
||||
|
@ -100,12 +107,26 @@
|
|||
<multisample-color-samples>4</multisample-color-samples>
|
||||
</attachment>
|
||||
</pass>
|
||||
|
||||
<pass>
|
||||
<name>volumetric-clouds</name>
|
||||
<type>quad</type>
|
||||
<effect>Effects/ALS/volumetric-clouds</effect>
|
||||
<binding>
|
||||
<buffer>color</buffer>
|
||||
<unit>0</unit>
|
||||
</binding>
|
||||
<attachment>
|
||||
<buffer>final</buffer>
|
||||
<component>color0</component>
|
||||
</attachment>
|
||||
</pass>
|
||||
|
||||
<pass>
|
||||
<name>display</name>
|
||||
<type>quad</type>
|
||||
<binding>
|
||||
<buffer>color</buffer>
|
||||
<buffer>final</buffer>
|
||||
<unit>0</unit>
|
||||
</binding>
|
||||
</pass>
|
||||
|
|
114
Compositor/Effects/ALS/volumetric-clouds.eff
Normal file
114
Compositor/Effects/ALS/volumetric-clouds.eff
Normal file
|
@ -0,0 +1,114 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<PropertyList>
|
||||
<name>Effects/ALS/volumetric-clouds</name>
|
||||
<parameters>
|
||||
<texture n="5">
|
||||
<image>Textures/Sky/vol_cloud_base.png</image>
|
||||
<type>2d</type>
|
||||
<filter>linear</filter>
|
||||
<wrap-s>repeat</wrap-s>
|
||||
<wrap-t>repeat</wrap-t>
|
||||
<internal-format>normalized</internal-format>
|
||||
</texture>
|
||||
<texture n="6">
|
||||
<image>Textures/Sky/vol_cloud_erosion.png</image>
|
||||
<type>2d</type>
|
||||
<filter>linear</filter>
|
||||
<wrap-s>repeat</wrap-s>
|
||||
<wrap-t>repeat</wrap-t>
|
||||
<internal-format>normalized</internal-format>
|
||||
</texture>
|
||||
|
||||
<base_scale><use>/test/base_scale</use></base_scale>
|
||||
<erosion_scale><use>/test/erosion_scal</use></erosion_scale>
|
||||
<cloud_density><use>/test/cloud_density</use></cloud_density>
|
||||
<erosion_strength><use>/test/erosion_strength</use></erosion_strength>
|
||||
</parameters>
|
||||
<technique n="10">
|
||||
<pass>
|
||||
<texture-unit>
|
||||
<unit>5</unit>
|
||||
<image>
|
||||
<use>texture[5]/image</use>
|
||||
</image>
|
||||
<type>
|
||||
<use>texture[5]/type</use>
|
||||
</type>
|
||||
<filter>
|
||||
<use>texture[5]/filter</use>
|
||||
</filter>
|
||||
<wrap-s>
|
||||
<use>texture[5]/wrap-s</use>
|
||||
</wrap-s>
|
||||
<wrap-t>
|
||||
<use>texture[5]/wrap-t</use>
|
||||
</wrap-t>
|
||||
<internal-format>
|
||||
<use>texture[5]/internal-format</use>
|
||||
</internal-format>
|
||||
</texture-unit>
|
||||
<texture-unit>
|
||||
<unit>6</unit>
|
||||
<image>
|
||||
<use>texture[6]/image</use>
|
||||
</image>
|
||||
<type>
|
||||
<use>texture[6]/type</use>
|
||||
</type>
|
||||
<filter>
|
||||
<use>texture[6]/filter</use>
|
||||
</filter>
|
||||
<wrap-s>
|
||||
<use>texture[6]/wrap-s</use>
|
||||
</wrap-s>
|
||||
<wrap-t>
|
||||
<use>texture[6]/wrap-t</use>
|
||||
</wrap-t>
|
||||
<internal-format>
|
||||
<use>texture[6]/internal-format</use>
|
||||
</internal-format>
|
||||
</texture-unit>
|
||||
<program>
|
||||
<vertex-shader>Shaders/Default/trivial.vert</vertex-shader>
|
||||
<fragment-shader>Shaders/ALS/volumetric-clouds.frag</fragment-shader>
|
||||
<fragment-shader>Shaders/ALS/noise.frag</fragment-shader>
|
||||
</program>
|
||||
<uniform>
|
||||
<name>color_tex</name>
|
||||
<type>sampler-2d</type>
|
||||
<value type="int">0</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>noise_base_tex</name>
|
||||
<type>sampler-2d</type>
|
||||
<value type="int">5</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>noise_erosion_tex</name>
|
||||
<type>sampler-2d</type>
|
||||
<value type="int">6</value>
|
||||
</uniform>
|
||||
|
||||
<uniform>
|
||||
<name>BASE_SCALE</name>
|
||||
<type>float</type>
|
||||
<value><use>base_scale</use></value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>EROSION_SCALE</name>
|
||||
<type>float</type>
|
||||
<value><use>erosion_scale</use></value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>CLOUD_DENSITY</name>
|
||||
<type>float</type>
|
||||
<value><use>cloud_density</use></value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>CLOUD_EROSION_STRENGTH</name>
|
||||
<type>float</type>
|
||||
<value><use>erosion_strength</use></value>
|
||||
</uniform>
|
||||
</pass>
|
||||
</technique>
|
||||
</PropertyList>
|
122
Compositor/Shaders/ALS/volumetric-clouds-util.frag
Normal file
122
Compositor/Shaders/ALS/volumetric-clouds-util.frag
Normal file
|
@ -0,0 +1,122 @@
|
|||
#version 120
|
||||
|
||||
uniform float terminator;
|
||||
uniform float altitude;
|
||||
uniform float cloud_self_shading;
|
||||
uniform float moonlight;
|
||||
|
||||
const float shade = 1.0;
|
||||
const float cloud_height = 1000.0;
|
||||
const float EarthRadius = 5800000.0;
|
||||
|
||||
vec3 moonlight_perception(in vec3 light);
|
||||
|
||||
float light_func(in float x, in float a, in float b, in float c, in float d, in float e)
|
||||
{
|
||||
x = x-0.5;
|
||||
if (x > 30.0) {return e;}
|
||||
if (x < -15.0) {return 0.03;}
|
||||
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
||||
}
|
||||
|
||||
void alsCloud(out vec4 out_color, out vec3 hazeColor, out float fogFactor)
|
||||
{
|
||||
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
||||
vec3 moonLightColor = vec3(0.095, 0.095, 0.15) * moonlight;
|
||||
moonLightColor = moonlight_perception(moonLightColor);
|
||||
|
||||
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
||||
//gl_TexCoord[0] = gl_MultiTexCoord0 + vec4(textureIndexX, textureIndexY, 0.0, 0.0);
|
||||
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
||||
vec4 l = gl_ModelViewMatrixInverse * vec4(0.0,0.0,1.0,1.0);
|
||||
vec3 u = normalize(ep.xyz - l.xyz);
|
||||
|
||||
gl_Position = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
gl_Position.x = gl_Vertex.x;
|
||||
gl_Position.y += gl_Vertex.y;
|
||||
gl_Position.z += gl_Vertex.z;
|
||||
gl_Position.xyz += gl_Color.xyz;
|
||||
|
||||
|
||||
// Determine a lighting normal based on the vertex position from the
|
||||
// center of the cloud, so that sprite on the opposite side of the cloud to the sun are darker.
|
||||
float n = dot(normalize(-gl_LightSource[0].position.xyz),
|
||||
normalize(mat3x3(gl_ModelViewMatrix) * (- gl_Position.xyz)));;
|
||||
|
||||
// Determine the position - used for fog and shading calculations
|
||||
vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Position);
|
||||
float fogCoord = abs(ecPosition.z);
|
||||
float fract = smoothstep(0.0, cloud_height, gl_Position.z + cloud_height);
|
||||
|
||||
vec3 relVector = gl_Position.xyz - ep.xyz;
|
||||
gl_Position = gl_ModelViewProjectionMatrix * gl_Position;
|
||||
|
||||
// Light at the final position
|
||||
|
||||
// first obtain normal to sun position
|
||||
|
||||
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
|
||||
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
|
||||
|
||||
// yprime is the distance of the vertex into sun direction, corrected for altitude
|
||||
//float vertex_alt = max(altitude * 0.30480 + relVector.z,100.0);
|
||||
float vertex_alt = altitude + relVector.z;
|
||||
float yprime = -dot(relVector, lightHorizon);
|
||||
float yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
||||
|
||||
// compute the light at the position
|
||||
vec4 light_diffuse;
|
||||
|
||||
float lightArg = (terminator-yprime_alt)/100000.0;
|
||||
|
||||
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 2.227, 1.08e-05, 1.0);
|
||||
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
||||
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
||||
light_diffuse.a = 1.0;
|
||||
|
||||
float intensity = length(light_diffuse.rgb);
|
||||
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, (1.0 - smoothstep(0.5,0.9, cloud_self_shading ))));
|
||||
|
||||
n = min(smoothstep(-0.5, 0.0, n), fract);
|
||||
|
||||
vec4 backlight = light_diffuse * shade;
|
||||
|
||||
out_color = mix(backlight, light_diffuse, n);
|
||||
out_color += gl_FrontLightModelProduct.sceneColor;
|
||||
|
||||
// As we get within 100m of the sprite, it is faded out. Equally at large distances it also fades out.
|
||||
out_color.a = min(smoothstep(100.0, 250.0, fogCoord), 1.0 - smoothstep(70000.0, 75000.0, fogCoord));
|
||||
|
||||
// Fog doesn't affect rain as much as other objects.
|
||||
//fogFactor = exp( -gl_Fog.density * fogCoord * 0.4);
|
||||
//fogFactor = clamp(fogFactor, 0.0, 1.0);
|
||||
|
||||
float fadeScale = 0.05 + 0.2 * log(fogCoord/1000.0);
|
||||
if (fadeScale < 0.05) fadeScale = 0.05;
|
||||
fogFactor = exp( -gl_Fog.density * fogCoord * fadeScale);
|
||||
|
||||
hazeColor = light_diffuse.rgb;
|
||||
hazeColor.r = hazeColor.r * 0.83;
|
||||
hazeColor.g = hazeColor.g * 0.9;
|
||||
|
||||
// in sunset or sunrise conditions, do extra shading of clouds
|
||||
|
||||
|
||||
|
||||
// two times terminator width governs how quickly light fades into shadow
|
||||
float terminator_width = 200000.0;
|
||||
|
||||
// now dim the light
|
||||
float earthShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1;
|
||||
|
||||
if (earthShade < 0.8)
|
||||
{
|
||||
intensity = length(light_diffuse.rgb);
|
||||
out_color.rgb = intensity * normalize(mix(out_color.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade ) ));
|
||||
}
|
||||
|
||||
hazeColor = hazeColor * earthShade;
|
||||
out_color.rgb = out_color.rgb * earthShade;
|
||||
out_color.rgb = out_color.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
|
||||
hazeColor.rgb = hazeColor.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
|
||||
}
|
214
Compositor/Shaders/ALS/volumetric-clouds.frag
Normal file
214
Compositor/Shaders/ALS/volumetric-clouds.frag
Normal file
|
@ -0,0 +1,214 @@
|
|||
#version 120
|
||||
|
||||
#define MAX_MARCHING_STEPS 256
|
||||
#define CLOUD_START_ALT 1500.0
|
||||
#define CLOUD_END_ALT 3000.0
|
||||
|
||||
uniform float BASE_SCALE;
|
||||
uniform float EROSION_SCALE;
|
||||
uniform float CLOUD_DENSITY; // 0.04
|
||||
uniform float CLOUD_EROSION_STRENGTH; // 0.2
|
||||
|
||||
uniform sampler2D color_tex;
|
||||
uniform sampler2D noise_base_tex;
|
||||
uniform sampler2D noise_erosion_tex;
|
||||
|
||||
uniform vec2 fg_ViewportSize;
|
||||
uniform vec3 fg_CameraPositionCart;
|
||||
uniform vec3 fg_CameraPositionGeod;
|
||||
uniform vec3 fg_LightDirection;
|
||||
|
||||
uniform mat4 fg_ViewMatrixInverse;
|
||||
uniform mat4 fg_ProjectionMatrixInverse;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
float Noise2D(in vec2 coord, in float wavelength);
|
||||
float Noise3D(in vec3 coord, in float wavelength);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
float map(float s, float a1, float a2, float b1, float b2)
|
||||
{
|
||||
return b1+(s-a1)*(b2-b1)/(a2-a1);
|
||||
}
|
||||
|
||||
vec3 getAmbientLight(float altitude)
|
||||
{
|
||||
// TODO: Actually return the cloud ambient light for this altitude
|
||||
return mix(vec3(39.0, 67.0, 87.0) * (1.5/255.0),
|
||||
vec3(149.0, 167.0, 200.0) * (1.5/255.0),
|
||||
altitude);
|
||||
}
|
||||
|
||||
// Henyey-Greenstein phase function is used instead of the much more complicated
|
||||
// Mie phase function to approximate the angular distribution of scattered light
|
||||
float HenyeyGreenstein(float costheta, float g)
|
||||
{
|
||||
float gg = g * g;
|
||||
return (1.0 - gg) * pow(1.0 + gg - 2.0 * g * costheta, -1.5) * 0.25;
|
||||
}
|
||||
|
||||
// Placeholder function to read a tiled 2D texture as a 3D texture
|
||||
float sampleNoiseTexture(sampler2D tex, vec3 p, float size)
|
||||
{
|
||||
float xoffset = mod(p.z, size) * size;
|
||||
float x = mod(p.x, size);
|
||||
float y = mod(p.y, size);
|
||||
vec2 uv = vec2(xoffset + x, y);
|
||||
|
||||
return texture2D(tex, uv).r;
|
||||
}
|
||||
|
||||
// Get the cloud density in a given sky position and altitude
|
||||
float getDensity(vec3 pos, float alt)
|
||||
{
|
||||
// Get the low frequency noise that defines the base shape of the cloud
|
||||
float lowFreqNoise = sampleNoiseTexture(noise_base_tex, pos / BASE_SCALE, 128.0);
|
||||
|
||||
// Modulate the noise by a coverage value (this could be a CPU generated
|
||||
// weather texture instead)
|
||||
float coverage = Noise3D(pos, 10000.0) * 0.625 +
|
||||
Noise3D(pos, 5000.0) * 0.250 +
|
||||
Noise3D(pos, 2500.0) * 0.125;
|
||||
coverage = smoothstep(0.6, 0.7, coverage);
|
||||
|
||||
float baseCloud = map(lowFreqNoise, 1.0 - coverage, 1.0, 0.0, 1.0);
|
||||
baseCloud *= coverage;
|
||||
|
||||
// Get the height signal
|
||||
float heightSignal = smoothstep(0.0, 0.1, alt) * (1.0 - smoothstep(0.6, 1.0, alt));
|
||||
baseCloud *= heightSignal;
|
||||
|
||||
// Apply some erosion to add details
|
||||
float highFreqNoise = sampleNoiseTexture(noise_erosion_tex, pos / EROSION_SCALE, 32.0);
|
||||
//float highFreqNoise = 0.0;
|
||||
float density = map(baseCloud, highFreqNoise * CLOUD_EROSION_STRENGTH, 1.0,
|
||||
0.0, 1.0);
|
||||
|
||||
return clamp(density * CLOUD_DENSITY, 0.0, 1.0);
|
||||
}
|
||||
|
||||
float shadowing(vec3 pos, float alt, vec3 lightDir)
|
||||
{
|
||||
float stepDelta = 10.0;
|
||||
float t = stepDelta;
|
||||
float shadow = 1.0;
|
||||
|
||||
for(int i = 0; i < 6; ++i) {
|
||||
vec3 samplePoint = pos + lightDir * t;
|
||||
|
||||
float density = getDensity(samplePoint, alt);
|
||||
shadow *= exp(-density * stepDelta);
|
||||
|
||||
stepDelta *= 1.6;
|
||||
t += stepDelta;
|
||||
}
|
||||
|
||||
return shadow;
|
||||
}
|
||||
|
||||
vec3 raySphereIntersection(vec3 cameraPos, vec3 direction, float altitude)
|
||||
{
|
||||
float radius = length(cameraPos) - fg_CameraPositionGeod.z + altitude;
|
||||
float a = dot(direction, direction) * 2.0;
|
||||
float b = dot(direction, cameraPos) * 2.0;
|
||||
float c = dot(cameraPos, cameraPos) - radius * radius;
|
||||
float discriminant = b * b - 2.0 * a * c;
|
||||
float t = max(0.0, (-b + sqrt(discriminant)) / a);
|
||||
vec3 intersection = cameraPos + direction * t;
|
||||
return intersection;
|
||||
}
|
||||
|
||||
vec4 rayMarch(vec3 eye, vec3 dir)
|
||||
{
|
||||
vec3 entry;
|
||||
float dist;
|
||||
// TODO: make this actually work
|
||||
if (fg_CameraPositionGeod.z < CLOUD_START_ALT) {
|
||||
// We are below the clouds
|
||||
|
||||
// Discard fragments below the horizon
|
||||
if (dot(normalize(eye), dir) < 0.0)
|
||||
return vec4(0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
entry = raySphereIntersection(eye, dir, CLOUD_START_ALT);
|
||||
vec3 exit = raySphereIntersection(eye, dir, CLOUD_END_ALT);
|
||||
dist = distance(entry, exit);
|
||||
} else if (fg_CameraPositionGeod.z > CLOUD_END_ALT) {
|
||||
// We are over the clouds
|
||||
entry = raySphereIntersection(eye, dir, CLOUD_END_ALT);
|
||||
vec3 exit = raySphereIntersection(eye, dir, CLOUD_START_ALT);
|
||||
dist = distance(entry, exit);
|
||||
} else {
|
||||
// We are inside the clouds
|
||||
entry = eye;
|
||||
vec3 exit = raySphereIntersection(eye, dir, CLOUD_END_ALT);
|
||||
if (exit == eye)
|
||||
exit = raySphereIntersection(eye, dir, CLOUD_START_ALT);
|
||||
dist = max(distance(entry, exit), 2000.0);
|
||||
}
|
||||
|
||||
float t = 0.0;
|
||||
float stepDelta = dist / float(MAX_MARCHING_STEPS);
|
||||
|
||||
vec3 lightDir = fg_LightDirection;
|
||||
float costheta = dot(dir, lightDir);
|
||||
|
||||
float phase = mix(HenyeyGreenstein(costheta, 0.8),
|
||||
HenyeyGreenstein(costheta, -0.2),
|
||||
0.5);
|
||||
|
||||
// The RGB part contains the scattered light color and the alpha value contains
|
||||
// the transmittance, both along the ray
|
||||
vec4 result = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
for (int i = 0; i < MAX_MARCHING_STEPS; ++i) {
|
||||
vec3 samplePoint = entry + dir * t;
|
||||
|
||||
float earthRadius = length(fg_CameraPositionCart) - fg_CameraPositionGeod.z;
|
||||
float altitude = length(samplePoint) - earthRadius;
|
||||
float normalizedAlt = clamp((altitude - CLOUD_START_ALT) /
|
||||
(CLOUD_END_ALT - CLOUD_START_ALT), 0.0, 1.0);
|
||||
|
||||
float density = getDensity(samplePoint, normalizedAlt);
|
||||
|
||||
// Only evaluate lighting for samples inside clouds
|
||||
if (density > 0.0) {
|
||||
vec3 ambient = getAmbientLight(normalizedAlt);
|
||||
|
||||
// Analytical integration of Beer–Lambert’s law to calculate
|
||||
// transmittance
|
||||
vec3 S = (ambient + (phase * shadowing(samplePoint, normalizedAlt, lightDir))) * density;
|
||||
//float transmittance = exp(-density * stepDelta);
|
||||
float transmittance = max(exp(-density * stepDelta), (exp(-density * stepDelta * 0.25) * 0.7));
|
||||
vec3 Sint = (S - S * transmittance) / density;
|
||||
|
||||
result.rgb += result.a * Sint;
|
||||
result.a *= transmittance;
|
||||
}
|
||||
|
||||
if (result.a <= 0.1)
|
||||
break;
|
||||
|
||||
t += stepDelta;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec2 uv = gl_FragCoord.xy / fg_ViewportSize;
|
||||
vec2 rayNDS = uv * 2.0 - 1.0;
|
||||
vec4 rayCS = vec4(rayNDS, -1.0, 1.0);
|
||||
vec4 rayVS = fg_ProjectionMatrixInverse * rayCS;
|
||||
rayVS = vec4(rayVS.xy, -1.0, 0.0);
|
||||
|
||||
vec3 rayWS = normalize(fg_ViewMatrixInverse * rayVS).xyz;
|
||||
|
||||
vec4 cloudColor = rayMarch(fg_CameraPositionCart, rayWS);
|
||||
vec3 backgroundColor = texture2D(color_tex, uv).xyz;
|
||||
|
||||
gl_FragColor = vec4(cloudColor.rgb + backgroundColor.rgb * cloudColor.a, 1.0);
|
||||
}
|
BIN
Textures/Sky/vol_cloud_base.png
Normal file
BIN
Textures/Sky/vol_cloud_base.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 974 KiB |
BIN
Textures/Sky/vol_cloud_erosion.png
Normal file
BIN
Textures/Sky/vol_cloud_erosion.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Loading…
Add table
Reference in a new issue