1
0
Fork 0

Add new shaders in support of .dds textures

Signed-off-by: Vivian Meazza <vivian.meazza@lineone.net>
This commit is contained in:
Vivian Meazza 2011-09-05 16:02:06 +01:00
parent bcf2a72fd6
commit 062594ff05
3 changed files with 280 additions and 0 deletions

124
Shaders/transition.frag Normal file
View file

@ -0,0 +1,124 @@
// -*-C++-*-
// Texture switching based on face slope and snow level
// default.frag (c) 2010 ??
// (c)2011 - Emilian Huminiuc, with ideas from crop.frag, forest.frag
// Ambient term comes in gl_Color.rgb.
varying vec4 diffuse_term, RawPos;
varying vec3 Vnormal, normal;
varying float fogCoord;
uniform float SnowLevel, Transitions, InverseSlope, RainNorm;
uniform sampler2D BaseTex, SecondTex, ThirdTex, SnowTex;
uniform sampler3D NoiseTex;
void main()
{
float MixFactor, NdotL, NdotHV, fogFactor, slope, L1, L2, wetness;
vec3 n, lightDir, halfVector;
vec4 texel, fragColor, color, specular, Noise; // GNoise;
lightDir = gl_LightSource[0].position.xyz;
halfVector = gl_LightSource[0].halfVector.xyz;
color = gl_Color;
specular = vec4(0.0);
Noise = texture3D(NoiseTex, RawPos.xyz*0.0011);
//GNoise = texture3D(NoiseTex, RawPos.xyz*0.00011);
MixFactor = Noise.r * Noise.g * Noise.b; //Mixing Factor to create a more organic looking boundary
//AddedNoise = GNoise.r * GNoise.g * GNoise.b; //Some added Noise to break the evenness on some textures
MixFactor *= 50.0;
L1 = 0.88 - 0.04 * MixFactor; //first transition slope
L2 = 0.80 + 0.04 * MixFactor; //Second transition slope
// If gl_Color.a == 0, this is a back-facing polygon and the
// Vnormal should be reversed.
n = (2.0 * gl_Color.a - 1.0) * Vnormal;
n = normalize(n);
NdotL = dot(n, lightDir);
if (NdotL > 0.0) {
color += diffuse_term * NdotL;
NdotHV = max(dot(n, halfVector), 0.0);
if (gl_FrontMaterial.shininess > 0.0)
specular.rgb = (gl_FrontMaterial.specular.rgb
* gl_LightSource[0].specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess));
}
color.a = diffuse_term.a;
// This shouldn't be necessary, but our lighting becomes very
// saturated. Clamping the color before modulating by the texture
// is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0);
//Select texture based on slope
slope = normalize(normal).z;
//Normal transition. For more abrupt faces apply another texture (or 2).
if (InverseSlope == 0.0) {
//Do we do an intermediate transition
if (Transitions >= 1.5) {
if (slope > L1) {
texel = mix(texture2D(SecondTex, gl_TexCoord[0].st), texture2D(BaseTex, gl_TexCoord[0].st), smoothstep(L1, L1 + 0.003*MixFactor, slope));
}
if (slope > L2 && slope <= L1){
texel = mix(texture2D(SecondTex, gl_TexCoord[0].st), texture2D(BaseTex, gl_TexCoord[0].st), smoothstep(L2 + 0.01 * MixFactor, L1, slope));
}
if (slope <= L2){
texel = mix(texture2D(ThirdTex, gl_TexCoord[0].st), texture2D(SecondTex, gl_TexCoord[0].st), smoothstep(L2 - 0.1 * MixFactor, L2, slope));
}
// Just one transition
} else if (Transitions < 1.5) {
if (slope > L1) {
texel = texture2D(BaseTex, gl_TexCoord[0].st);
}
if (slope <= L1) {
texel = mix(texture2D(ThirdTex, gl_TexCoord[0].st), texture2D(BaseTex, gl_TexCoord[0].st), smoothstep(L2 - 0.1 * MixFactor, L1, slope));
}
}
//Invert the transition: keep original texture on abrupt slopes and switch to another on flatter terrain
} else if (InverseSlope > 0.0) {
//Interemdiate transition ?
if (Transitions >= 1.5) {
if (slope > L1 + 0.16) {
texel = texture2D(ThirdTex, gl_TexCoord[0].st);
}
if (slope > L2 && slope <= L1 + 0.16){
texel = mix(texture2D(SecondTex, gl_TexCoord[0].st), texture2D(ThirdTex, gl_TexCoord[0].st), smoothstep(L2 + 0.01 * MixFactor, L1, slope));
}
if (slope <= L2){
texel = mix(texture2D(BaseTex, gl_TexCoord[0].st), texture2D(SecondTex, gl_TexCoord[0].st), smoothstep(L2 - 0.05 * MixFactor, L2, slope));
}
//just one
} else if (Transitions < 1.5) {
if (slope > L1 + 0.16) {
texel = texture2D(ThirdTex, gl_TexCoord[0].st);
}
if (slope <= L1 + 0.16){
texel = mix(texture2D(BaseTex, gl_TexCoord[0].st), texture2D(ThirdTex, gl_TexCoord[0].st), smoothstep(L2 - 0.05 * MixFactor, L1 + 0.16, slope));
}
}
}
//darken textures with wetness
wetness = 1.0 - 0.3 * RainNorm;
texel.rgb = texel.rgb * wetness;
//texel.r = texel.r * wetness;
//texel.g = texel.g * wetness;
//texel.b = texel.b * wetness;
//Snow texture for areas higher than SnowLevel
if (RawPos.z >= SnowLevel - 6000.0 * MixFactor && slope > L2 - 0.4) {
texel = mix(texel, mix(texel, texture2D(SnowTex, gl_TexCoord[0].st), smoothstep(L2 - 0.4 * MixFactor, L2, slope)), smoothstep(SnowLevel - 6000.0 * slope * MixFactor, SnowLevel - 1400.0 * slope * MixFactor, RawPos.z));
}
fragColor = color * texel + specular;
fogFactor = exp(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord);
gl_FragColor = mix(gl_Fog.color, fragColor, fogFactor);
}

57
Shaders/transition.vert Normal file
View file

@ -0,0 +1,57 @@
// -*-C++-*-
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec4 diffuse_term, RawPos;
varying vec3 normal, Vnormal;
varying float fogCoord;
uniform int colorMode;
void main()
{
RawPos = gl_Vertex;
vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
gl_Position = ftransform();
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
normal = normalize(gl_Normal);
Vnormal = gl_NormalMatrix * gl_Normal;
vec4 ambient_color, diffuse_color;
if (colorMode == MODE_DIFFUSE) {
diffuse_color = gl_Color;
ambient_color = gl_FrontMaterial.ambient;
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
diffuse_color = gl_Color;
ambient_color = gl_Color;
} else {
diffuse_color = gl_FrontMaterial.diffuse;
ambient_color = gl_FrontMaterial.ambient;
}
diffuse_term = diffuse_color * gl_LightSource[0].diffuse;
vec4 constant_term = gl_FrontMaterial.emission + ambient_color *
(gl_LightModel.ambient + gl_LightSource[0].ambient);
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
diffuse_term.a = gl_FrontMaterial.diffuse.a;
else
diffuse_term.a = gl_Color.a;
// Another hack for supporting two-sided lighting without using
// gl_FrontFacing in the fragment shader.
gl_FrontColor.rgb = constant_term.rgb; gl_FrontColor.a = 1.0;
gl_BackColor.rgb = constant_term.rgb; gl_BackColor.a = 0.0;
fogCoord = abs(ecPosition.z / ecPosition.w);
}

99
Shaders/water-inland.frag Normal file
View file

@ -0,0 +1,99 @@
// This shader is mostly an adaptation of the shader found at
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
// © Michael Horsch - 2005
uniform sampler2D water_normalmap;
uniform sampler2D water_reflection;
uniform sampler2D water_dudvmap;
uniform float saturation;
uniform float RainNorm;
varying vec4 waterTex1; //moving texcoords
varying vec4 waterTex2; //moving texcoords
varying vec4 waterTex4; //viewts
varying vec4 ecPosition;
varying vec3 viewerdir;
varying vec3 lightdir;
varying vec3 normal;
void main(void)
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
// compute direction to viewer
vec3 E = normalize(viewerdir);
// compute direction to light source
vec3 L = normalize(lightdir);
// half vector
vec3 H = normalize(L + E);
const float water_shininess = 240.0;
vec4 viewt = normalize(waterTex4);
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0;
vec4 dist = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)) * 2.0 - 1.0;
vec4 fdist = normalize(dist);
fdist *= sca;
//normalmap
vec4 nmap0 = texture2D(water_normalmap, vec2(waterTex1+ disdis*sca2)) * 2.0 - 1.0;
vec4 nmap2 = texture2D(water_normalmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0;
vec4 vNorm = normalize(nmap0 + nmap2);
//load reflection
vec4 tmp = vec4(lightdir, 0.0);
vec4 refTex = texture2D(water_reflection, vec2(tmp));
vec4 refl = normalize(refTex);
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1+ disdis*sca2)) * 2.0 - 1.0);
vec3 N1 = vec3(texture2D(water_normalmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0);
vec3 N = normalize(normal+N0+N1);
vec3 specular_color = vec3(gl_LightSource[0].diffuse)
* pow(max(0.0, dot(N, H)), water_shininess) * 6.0;
vec4 specular = vec4(specular_color,0.5);
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
// take rain into account
float rain_factor = 0.7 - RainNorm;
rain_factor = clamp(rain_factor, 0, 1);
if (RainNorm > 0)
{
refl *= (0.9, 1.0, 0.6 * rain_factor, 1.0);
}
else
{
refl *= (0.9, 1.0, 0.6, 1.0);
}
specular = specular * 0.4 * rain_factor;
vec4 finalColor = refl + specular;
float fogFactor;
float fogCoord = ecPosition.z;
const float LOG2 = 1.442695;
fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2);
vec4 ambient_light = gl_LightSource[0].diffuse;
finalColor *= ambient_light;
if(gl_Fog.density == 1.0)
fogFactor=1.0;
gl_FragColor = mix(gl_Fog.color,finalColor, fogFactor);
}