1
0
Fork 0
fgdata/Shaders/scenery-lights.frag

175 lines
5.6 KiB
GLSL
Raw Normal View History

// -*-C++-*-
#version 120
// Shader that takes a list of GL_POINTS and draws a light (point-sprite like
// texture, more accurately a light halo) at the given point. This shader
// provides support for light animations like blinking, time period handling
// for lights on only during night time or in low visiblity and directional
// lighting.
//
// The actual rendering code is heavily based on an existing implementation
// found at:
// FGData commit 9355d464c175bd5d51ba32527180ed4e94e86fbb
// Shaders/surface-lights-ALS.frag
// with minor modifications for readability and tuning.
//
// Licence: GPL v2+
// Written by Fahim Dalvi, January 2021
uniform sampler2D texture;
uniform float visibility;
uniform float avisibility;
uniform float hazeLayerAltitude;
uniform float eye_alt;
uniform float terminator;
uniform bool use_IR_vision;
uniform bool use_night_vision;
varying vec3 relativePosition;
varying vec2 rawPosition;
varying float apparentSize;
varying float haloSize;
varying float lightSize;
varying float lightIntensity;
float alt;
float Noise2D(in vec2 coord, in float wavelength);
float fog_func (in float targ)
{
float fade_mix;
// for large altitude > 30 km, we switch to some component of quadratic distance fading to
// create the illusion of improved visibility range
targ = 1.25 * targ * smoothstep(0.04,0.06,targ); // need to sync with the distance to which terrain is drawn
if (alt < 30000.0) {
return exp(-targ - targ * targ * targ * targ);
} else if (alt < 50000.0) {
fade_mix = (alt - 30000.0)/20000.0;
return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0));
} else {
return exp(- targ * targ - pow(targ,4.0));
}
}
float light_sprite (in vec2 coord, in float transmission, in float noise)
{
// Center the texture coordinates at (0,0)
coord.s = coord.s - 0.5;
coord.t = coord.t - 0.5;
// Radius of the current pixel from the center of the light ranging from 0 to 1
float r = length(coord) * 2;
// If the light is too small, return constant intensity
if (apparentSize<1.3) {return 0.08;}
// Calculate the rays (star-shaped structure) around the light
// These are randomized for every light based on `noise`
float angle = noise * 6.2832;
float sinphi = dot(vec2 (sin(angle),cos(angle)), normalize(coord));
float sinterm = sin(mod((sinphi-3.0) * (sinphi-3.0),6.2832));
float ray = 0.0;
if (sinterm == 0.0) {
ray = 0.0;
} else {
ray = sinterm * sinterm * sinterm * sinterm * sinterm * sinterm * sinterm * sinterm * sinterm * sinterm;
}
ray *= 0.2 * exp(-4 * pow(r, 2.5));
float fogEffect = (1.0-smoothstep(0.4, 0.8, transmission));
float halo = 0.2 * exp(-4.0 * pow(r, 2.5));
float base = exp(-4 * pow(r * haloSize, 2.5));
// Combine:
// base: the central disc of the light
// halo: the faint discs around the light
// ray: star-like structures around the disk
float intensity = clamp(ray + base + halo, 0.0, 1.0) + 0.1 * fogEffect * (1.0-smoothstep(0.3, 0.6, r));
return intensity;
}
void main()
{
float dist = length(relativePosition);
float delta_z = hazeLayerAltitude - eye_alt;
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
if (use_IR_vision) {discard;}
float noise = Noise2D(rawPosition.xy ,1.0);
// angle with horizon
float ct = dot(vec3(0.0, 0.0, 1.0), relativePosition)/dist;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) {
// we look down
distance_in_layer = dist;
vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct;
delta_zv = delta_z - vAltitude;
} else {
// we may look through upper layer edge
H = dist * ct;
if (H > delta_z) {
distance_in_layer = dist/H * delta_z;
} else {
distance_in_layer = dist;
}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
} else {
// we see the layer from above, delta_z < 0.0
H = dist * -ct;
if (H < (-delta_z)) {
// we don't see into the layer at all, aloft visibility is the only fading
distance_in_layer = 0.0;
delta_zv = 0.0;
} else {
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
if (visibility < avisibility) {
transmission_arg = transmission_arg + (distance_in_layer/visibility);
} else {
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
}
transmission = fog_func(transmission_arg);
float lightArg = terminator/100000.0;
float attenuationScale = 1.0 + 20.0 * (1.0 -smoothstep(-15.0, 0.0, lightArg));
float dist_att = exp(-dist/200.0/lightSize/attenuationScale);
float intensity = light_sprite(gl_TexCoord[0].st, transmission, noise);
vec3 light_color = gl_Color.rgb;
if (use_night_vision) {
light_color.rgb = vec3 (0.0, 1.0, 0.0);
}
light_color = mix(light_color, vec3 (1.0, 1.0, 1.0), 0.5 * intensity * intensity);
gl_FragColor = vec4 (clamp(light_color.rgb, 0.0, 1.0), intensity * transmission * dist_att);
}