1
0
Fork 0
fgdata/Compositor/Shaders/ALS/runway.frag

529 lines
16 KiB
GLSL
Raw Normal View History

// -*-C++-*-
#version 120
// written by Thorsten Renk, Oct 2011, based on default.frag
// Ambient term comes in gl_Color.rgb.
varying vec4 diffuse_term;
varying vec3 normal;
varying vec3 relPos;
varying vec2 rawPos;
varying vec3 worldPos;
varying vec3 ecViewdir;
uniform sampler2D texture;
uniform sampler2D NormalTex;
varying float steepness;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float terminator;
uniform float terrain_alt;
uniform float hazeLayerAltitude;
uniform float overcast;
uniform float eye_alt;
uniform float snowlevel;
uniform float dust_cover_factor;
uniform float lichen_cover_factor;
uniform float wetness;
uniform float rain_norm;
uniform float fogstructure;
uniform float snow_thickness_factor;
uniform float cloud_self_shading;
uniform float uvstretch;
uniform float landing_light1_offset;
uniform float landing_light2_offset;
uniform float landing_light3_offset;
uniform float air_pollution;
uniform float osg_SimulationTime;
uniform int quality_level;
uniform int tquality_level;
uniform int cloud_shadow_flag;
uniform int use_searchlight;
uniform int use_landing_light;
uniform int use_alt_landing_light;
uniform int overlay_flag;
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float alt;
float eShade;
float yprime_alt;
float mie_angle;
float shadow_func (in float x, in float y, in float noise, in float dist);
float Noise2D(in vec2 coord, in float wavelength);
float Noise3D(in vec3 coord, in float wavelength);
float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density);
float fog_func (in float targ, in float alt);
float alt_factor(in float eye_alt, in float vertex_alt);
float light_distance_fading(in float dist);
float fog_backscatter(in float avisibility);
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
vec3 searchlight();
vec3 landing_light(in float offset, in float offsetv);
vec3 lightspot(in vec3 relPos);
vec3 rayleigh_out_shift(in vec3 color, in float outscatter);
vec3 get_hazeColor(in float light_arg);
vec3 filter_combined (in vec3 color) ;
void main()
{
yprime_alt = diffuse_term.a;
mie_angle = gl_Color.a;
float effective_scattering = min(scattering, cloud_self_shading);
// distance to fragment
float dist = length(relPos);
// angle of view vector with horizon
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
// this is taken from default.frag
vec3 n;
float NdotL, NdotHV;
vec4 color = gl_Color;
color.a = 1.0;
vec3 lightDir = gl_LightSource[0].position.xyz;
vec3 E = normalize(ecViewdir);
vec3 halfVector;
if (quality_level<6)
{halfVector = gl_LightSource[0].halfVector.xyz;}
else
{halfVector = normalize(normalize(lightDir) + E);}
vec4 texel;
vec4 snow_texel;
vec4 detail_texel;
vec4 mix_texel;
vec4 fragColor;
vec4 specular = vec4(0.0);
float intensity;
// get noise at different wavelengths
// used: 5m, 5m gradient, 10m, 10m gradient: heightmap of the closeup terrain, 10m also snow
// 50m: detail texel
// 250m: detail texel
// 500m: distortion and overlay
// 1500m: overlay, detail, dust, fog
// 2000m: overlay, detail, snow, fog
float noise_01m;
float noise_1m = Noise2D(rawPos.xy, 1.0);
float noise_10m = Noise2D(rawPos.xy, 10.0);
float noise_20m = Noise2D(rawPos.xy, 20.0);
float noise_5m = Noise2D(rawPos.xy ,5.0);
float noise_50m = Noise2D(rawPos.xy, 50.0);
float noise_1500m = Noise3D(worldPos.xyz, 1500.0);
float noise_2000m = Noise3D(worldPos.xyz, 2000.0);
//
// get the texels
texel = texture2D(texture, vec2 (gl_TexCoord[0].s, gl_TexCoord[0].t * uvstretch));
vec4 nmap = texture2D(NormalTex, gl_TexCoord[0].st * 8.0);
vec3 N = nmap.rgb * 2.0 - 1.0;
// skid marks by procedural darkening
float mix_factor = smoothstep(0.0, 0.3, 1.0 - gl_TexCoord[0].t)* smoothstep(0.0, 0.1, gl_TexCoord[0].t);
float threshold;
if (overlay_flag > 0)
{
float centerness = 2.0 * (0.5 - abs(gl_TexCoord[0].s - 0.5));
if (overlay_flag == 1)
{
threshold = 0.4 + 0.3 * (1.0 -noise_50m);
}
else if (overlay_flag == 2)
{
threshold = mix(0.4 + 0.3 * (1.0 -noise_50m), 0.4, mix_factor);
}
else if (overlay_flag == 3)
{
threshold = 0.4 + 0.3 * (1.0 -noise_50m);
}
centerness = smoothstep(threshold, 1.0, centerness);
float sine_factor1 = smoothstep(0.6, 1.0, abs(sin(1.0 * noise_50m + 2.0 * gl_TexCoord[0].s + gl_TexCoord[0].s * 40.0)));
float sine_factor2 = smoothstep(0.7, 1.0, abs(sin(2.0 * noise_10m + gl_TexCoord[0].s + gl_TexCoord[0].s * 60.0)));
float sine_factor3 = smoothstep(0.7, 1.0, abs(sin(1.0 * noise_20m + gl_TexCoord[0].s + gl_TexCoord[0].s * 80.0)));
float sine_factor = sine_factor1 * smoothstep(0.4, 0.6, noise_10m);
sine_factor += sine_factor2 * (1.0 - smoothstep(0.5, 0.7, noise_10m));
sine_factor += sine_factor3 * smoothstep(0.5, 0.6, noise_20m);
sine_factor = min(sine_factor, 1.0);
centerness *=(0.7 + 0.3 *sine_factor);
float t_factor;
if (overlay_flag == 1)
{t_factor = smoothstep(0.0, 0.3, gl_TexCoord[0].t) * (0.4 + 0.2 * noise_50m);}
else if (overlay_flag == 2)
{
t_factor = mix (0.4 + 0.2 * noise_50m, 0.7 + 0.2 * noise_50m, mix_factor);
}
else if (overlay_flag == 3)
{t_factor = 0.3 + 0.2 * noise_50m;}
centerness *= t_factor;
centerness = 1.0 - centerness;
texel.rgb = texel.rgb * (0.2 + 0.8 * centerness);
}
float distortion_factor = 1.0;
vec2 stprime;
int flag = 1;
int mix_flag = 1;
float noise_term;
float snow_alpha;
if (quality_level > 3)
{
float sfactor;
noise_01m = Noise2D(rawPos.xy,0.1);
snow_texel = vec4 (0.95, 0.95, 0.95, 1.0) * (0.9 + 0.1* noise_50m + 0.1* (1.0 - noise_10m) );
snow_texel.a = 1.0;
noise_term = 0.1 * (noise_50m-0.5);
sfactor = 1.0;//sqrt(2.0 * (1.0-steepness)/0.03) + abs(ct)/0.15;
noise_term = noise_term + 0.2 * (noise_10m -0.5) * (1.0 - smoothstep(10000.0*sfactor, 16000.0*sfactor, dist) ) ;
noise_term = noise_term + 0.3 * (noise_5m -0.5) * (1.0 - smoothstep(1200.0 * sfactor, 2000.0 * sfactor, dist) ) ;
noise_term = noise_term + 0.3 * (noise_1m -0.5) * (1.0 - smoothstep(500.0 * sfactor, 1000.0 *sfactor, dist) );
noise_term = noise_term + 0.3 * (noise_01m -0.5) * (1.0 - smoothstep(20.0 * sfactor, 100.0 *sfactor, dist) );
snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + 0.2*snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) );
}
const vec3 dust_color = vec3 (0.76, 0.71, 0.56);
const vec3 lichen_color = vec3 (0.17, 0.20, 0.06);
//float snow_alpha;
if (quality_level > 3)
{
// mix vegetation
texel.rgb = mix(texel.rgb, lichen_color, 0.4 * lichen_cover_factor + 0.8 * lichen_cover_factor * 0.5 * (noise_10m + (1.0 - noise_5m)) );
// mix dust
texel.rgb = mix(texel.rgb, dust_color, clamp(0.5 * dust_cover_factor + 3.0 * dust_cover_factor * (((noise_1500m - 0.5) * 0.125)+0.125 ),0.0, 1.0) );
// mix snow
if (relPos.z + eye_alt +500.0 > snowlevel)
{
snow_alpha = smoothstep(0.75, 0.85, abs(steepness));
texel.rgb = mix(texel.rgb, snow_texel.rgb, snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, snow_alpha * (relPos.z + eye_alt)+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0));
}
}
// get distribution of water when terrain is wet
float water_threshold1;
float water_threshold2;
float water_factor =0.0;
if ((dist < 5000.0)&& (quality_level > 3) && (wetness>0.0))
{
water_threshold1 = 1.0-0.5* wetness;
water_threshold2 = 1.0 - 0.3 * wetness;
water_factor = smoothstep(water_threshold1, water_threshold2 , 0.5 * (noise_5m + (1.0 -noise_1m))) * (1.0 - smoothstep(1000.0, 3000.0, dist));
}
// darken wet terrain
texel.rgb = texel.rgb * (1.0 - 0.6 * wetness - 0.1 * water_factor);
// light computations
eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt);
vec4 light_specular = gl_LightSource[0].specular * eShade;
// If gl_Color.a == 0, this is a back-facing polygon and the
// normal should be reversed.
n = normal;
n = normalize(n);
// primary reflection of the Sun
float fresnel;
NdotL = dot(n, lightDir);
if (quality_level > 4)
{
NdotL = NdotL + (3.0 * N.r + 0.1 * (noise_01m-0.5))* (1.0 - water_factor) ;
}
if (NdotL > 0.0)
{
if (cloud_shadow_flag == 1)
{NdotL = NdotL * shadow_func(relPos.x, relPos.y, 1.0, dist);}
color += diffuse_term * NdotL;
NdotHV = max(dot(n, halfVector), 0.0);
fresnel = 1.0 + 5.0 * (1.0-smoothstep(0.0,0.2, dot(E,n)));
specular.rgb = ((vec3 (0.2,0.2,0.2) * fresnel + (water_factor * vec3 (1.0, 1.0, 1.0)))
* light_specular.rgb
* pow(NdotHV, max(4.0, (20.0 * water_factor))));
}
// raindrops
float rain_factor = 0.0;
if (rain_norm > 0.0)
{
rain_factor += DotNoise2D(rawPos.xy, 0.2 ,0.5, rain_norm) * abs(sin(6.0*osg_SimulationTime));
rain_factor += DotNoise2D(rawPos.xy, 0.3 ,0.4, rain_norm) * abs(sin(6.0*osg_SimulationTime + 2.094));
rain_factor += DotNoise2D(rawPos.xy, 0.4 ,0.3, rain_norm)* abs(sin(6.0*osg_SimulationTime + 4.188));
}
// secondary reflection of sky irradiance
float fresnelW = ((0.8 * wetness) + (0.2* water_factor)) * (1.0-smoothstep(0.0,0.4, dot(E,n) * 1.0 - 0.2 * rain_factor * wetness));
float sky_factor = (1.0-ct*ct);//mix((1.0 - ct * ct), 1.0-effective_scattering, effective_scattering);
vec3 sky_light = vec3 (1.0,1.0,1.0) * length(light_specular.rgb) * (1.0-effective_scattering);
specular.rgb += sky_factor * fresnelW * sky_light;
//specular.rgb *= 1.0 - 0.2 * dotnoise_02m * wetness;
color.a = 1.0;//diffuse_term.a;
// This shouldn't be necessary, but our lighting becomes very
// saturated. Clamping the color before modulating by the texture
// is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0);
vec3 secondary_light = vec3 (0.0,0.0,0.0);
if (use_searchlight == 1)
{
secondary_light.rgb += searchlight();
}
if (use_landing_light == 1)
{
secondary_light += landing_light(landing_light1_offset, landing_light3_offset);
}
if (use_alt_landing_light == 1)
{
secondary_light += landing_light(landing_light2_offset, landing_light3_offset);
}
color.rgb +=secondary_light * light_distance_fading(dist) + lightspot(relPos);
fragColor = color * texel + specular;
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// Rayleigh color shifts
if ((quality_level > 5) && (tquality_level > 5))
{
float rayleigh_length = 0.5 * avisibility * (2.5 - 1.9 * air_pollution)/alt_factor(eye_alt, eye_alt+relPos.z);
float outscatter = 1.0-exp(-dist/rayleigh_length);
fragColor.rgb = rayleigh_out_shift(fragColor.rgb,outscatter);
// Rayleigh color shift due to in-scattering
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z);
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
}
// here comes the terrain haze model
float delta_z = hazeLayerAltitude - eye_alt;
float mvisibility = min(visibility, avisibility);
if (dist > 0.04 * mvisibility)
{
alt = eye_alt;
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) // we look down
{
distance_in_layer = dist;
vAltitude = min(distance_in_layer,mvisibility) * ct;
delta_zv = delta_z - vAltitude;
}
else // we may look through upper layer edge
{
H = dist * ct;
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
else {distance_in_layer = dist;}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
}
else // we see the layer from above, delta_z < 0.0
{
H = dist * -ct;
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
{
distance_in_layer = 0.0;
delta_zv = 0.0;
}
else
{
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
float eqColorFactor;
if (visibility < avisibility)
{
if (quality_level > 3)
{
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility + 1.0 * visibility * fogstructure * 0.06 * (noise_1500m + noise_2000m -1.0) ));
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/visibility);
}
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0- effective_scattering);
}
else
{
if (quality_level > 3)
{
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility + 1.0 * avisibility * fogstructure * 0.06 * (noise_1500m + noise_2000m - 1.0) ));
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
}
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 - effective_scattering);
}
transmission = fog_func(transmission_arg, alt);
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// Mie-like factor
if (lightArg < 10.0)
{
intensity = length(hazeColor);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
}
intensity = length(hazeColor);
if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly
{
// high altitude desaturation of the haze color
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue of haze
hazeColor.x = hazeColor.x * 0.83;
hazeColor.y = hazeColor.y * 0.9;
// additional blue in indirect light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
// change haze color to blue hue for strong fogging
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
// reduce haze intensity when looking at shaded surfaces, only in terminator region
float shadow = mix( min(1.0 + dot(n,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
}
//hazeColor = clamp(hazeColor, 0.0, 1.0);
// don't let the light fade out too rapidly
lightArg = (terminator + 200000.0)/100000.0;
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
hazeColor.rgb *= eqColorFactor * eShade;
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
fragColor.rgb = mix(hazeColor +secondary_light * fog_backscatter(mvisibility), fragColor.rgb,transmission);
}
fragColor.rgb = filter_combined(fragColor.rgb);
gl_FragColor = fragColor;
}