1
0
Fork 0
fgdata/Shaders/HDR/stars.frag

53 lines
1.6 KiB
GLSL
Raw Normal View History

#version 330 core
layout(location = 0) out vec4 fragColor;
in VS_OUT {
vec4 color;
vec3 view_vector;
} fs_in;
uniform sampler2D transmittance_tex;
uniform float max_radiance;
uniform float fg_CameraDistanceToEarthCenter;
uniform float fg_EarthRadius;
uniform vec3 fg_CameraViewUp;
const float ATMOSPHERE_RADIUS = 6471e3;
// exposure.glsl
vec3 apply_exposure(vec3 color);
void main()
{
vec3 color = fs_in.color.rgb * fs_in.color.a * max_radiance;
vec3 V = normalize(fs_in.view_vector);
// Apply aerial perspective
float normalized_altitude =
(fg_CameraDistanceToEarthCenter - fg_EarthRadius)
/ (ATMOSPHERE_RADIUS - fg_EarthRadius);
float cos_theta = dot(-V, fg_CameraViewUp);
vec2 uv = vec2(cos_theta * 0.5 + 0.5, clamp(normalized_altitude, 0.0, 1.0));
vec4 transmittance = texture(transmittance_tex, uv);
// The proper thing would be to have spectral data for the stars' radiance.
// This could be approximated by taking the star's temperature and using
// Plank's law to obtain the spectral radiance for our 4 wavelengths.
// That's too complicated for now, so instead we just average the four
// spectral samples from the atmospheric transmittance.
color *= dot(transmittance, vec4(0.25));
// Pre-expose
color = apply_exposure(color);
// Final color = transmittance * star radiance + sky inscattering
// In this frag shader we output the multiplication part, and the sky
// in-scattering is added by doing additive blending on top of the skydome.
fragColor = vec4(color, 1.0);
}