1
0
Fork 0
fgdata/Nasal/aircraft.nas

953 lines
27 KiB
Text
Raw Normal View History

2008-10-09 17:20:27 +00:00
# This module provide basic functions and classes for use in aircraft specific
# Nasal context.
# helper functions
# ==============================================================================
# creates (if necessary) and returns a property node from arg[0],
# which can be a property node already, or a property path
#
var makeNode = func(n) {
if (isa(n, props.Node))
return n;
else
return props.globals.getNode(n, 1);
}
# returns args[index] if available and non-nil, or default otherwise
#
var optarg = func(args, index, default) {
size(args) > index and args[index] != nil ? args[index] : default;
}
# door
# ==============================================================================
# class for objects moving at constant speed, with the ability to
# reverse moving direction at any point. Appropriate for doors, canopies, etc.
#
# SYNOPSIS:
# door.new(<property>, <swingtime> [, <startpos>]);
#
# property ... door node: property path or node
# swingtime ... time in seconds for full movement (0 -> 1)
# startpos ... initial position (default: 0)
#
# PROPERTIES:
# ./position-norm (double) (default: <startpos>)
# ./enabled (bool) (default: 1)
#
# EXAMPLE:
# var canopy = aircraft.door.new("sim/model/foo/canopy", 5);
# canopy.open();
#
var door = {
new: func(node, swingtime, pos = 0) {
var m = { parents: [door] };
m.node = makeNode(node);
m.swingtime = swingtime;
m.enabledN = m.node.initNode("enabled", 1, "BOOL");
m.positionN = m.node.initNode("position-norm", pos);
m.target = pos < 0.5;
return m;
},
# door.enable(bool) -> set ./enabled
2008-10-09 17:20:27 +00:00
enable: func(v) {
me.enabledN.setBoolValue(v);
me;
},
# door.setpos(double) -> set ./position-norm without movement
2008-10-09 17:20:27 +00:00
setpos: func(pos) {
me.positionN.setValue(pos);
me.target = pos < 0.5;
me;
},
# double door.getpos() -> return current position as double
getpos: func {
me.positionN.getValue();
},
# door.close() -> move to closed state
close: func {
me.move(me.target = 0);
},
# door.open() -> move to open state
open: func {
me.move(me.target = 1);
},
# door.toggle() -> move to opposite end position
toggle: func {
me.move(me.target);
},
# door.stop() -> stop movement
stop: func {
interpolate(me.positionN);
},
# door.move(double) -> move to arbitrary position
2008-10-09 17:20:27 +00:00
move: func(target) {
var pos = me.getpos();
if (pos != target) {
var time = abs(pos - target) * me.swingtime;
interpolate(me.positionN, target, time);
}
me.target = !me.target;
},
};
# light
# ==============================================================================
# class for generation of pulsing values. Appropriate for controlling
# beacons, strobes, etc.
#
# SYNOPSIS:
# light.new(<property>, <pattern> [, <switch>]);
# light.new(<property>, <stretch>, <pattern> [, <switch>]);
#
# property ... light node: property path or node
# stretch ... multiplicator for all pattern values
# pattern ... array of on/off time intervals (in seconds)
# switch ... property path or node to use as switch (default: ./enabled)
# instead of ./enabled
#
# PROPERTIES:
# ./state (bool) (default: 0)
# ./enabled (bool) (default: 0) except if <switch> given)
#
# EXAMPLES:
# aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]); # anonymous light
#-------
# var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1],
# "controls/lighting/strobe");
# strobe.switch(1);
#-------
# var switch = props.globals.getNode("controls/lighting/strobe", 1);
# var pattern = [0.02, 0.03, 0.02, 1];
# aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, switch);
# aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, switch);
#
var light = {
2008-10-09 17:20:27 +00:00
new: func {
m = { parents: [light] };
m.node = makeNode(arg[0]);
var stretch = 1.0;
var c = 1;
if (typeof(arg[c]) == "scalar") {
stretch = arg[c];
c += 1;
}
m.pattern = arg[c];
c += 1;
if (size(arg) > c and arg[c] != nil)
m.switchN = makeNode(arg[c]);
else
m.switchN = m.node.getNode("enabled", 1);
if (m.switchN.getValue() == nil)
m.switchN.setBoolValue(0);
m.stateN = m.node.initNode("state", 0, "BOOL");
forindex (var i; m.pattern)
m.pattern[i] *= stretch;
m.index = 0;
m.loopid = 0;
m.continuous = 0;
m.lastswitch = 0;
m.seqcount = -1;
m.endstate = 0;
m.count = nil;
m.switchL = setlistener(m.switchN, func m._switch_(), 1);
return m;
},
# class destructor
2008-10-09 17:20:27 +00:00
del: func {
removelistener(me.switchL);
},
# light.switch(bool) -> set light switch (also affects other lights
# that use the same switch)
switch: func(v) {
me.switchN.setBoolValue(v);
me;
},
# light.toggle() -> toggle light switch
toggle: func {
me.switchN.setBoolValue(!me.switchN.getValue());
me;
},
# light.cont() -> continuous light
2008-10-09 17:20:27 +00:00
cont: func {
2006-12-05 19:32:44 +00:00
if (!me.continuous) {
me.continuous = 1;
me.loopid += 1;
me.stateN.setBoolValue(me.lastswitch);
}
me;
},
# light.blink() -> blinking light (default)
# light.blink(3) -> when switched on, only run three blink sequences;
# second optional arg defines state after the sequences
2008-10-09 17:20:27 +00:00
blink: func(count = -1, endstate = 0) {
me.seqcount = count;
me.endstate = endstate;
2006-12-05 19:32:44 +00:00
if (me.continuous) {
me.continuous = 0;
me.index = 0;
me.stateN.setBoolValue(0);
2006-12-05 19:32:44 +00:00
me.lastswitch and me._loop_(me.loopid += 1);
}
me;
},
2008-10-09 17:20:27 +00:00
_switch_: func {
var switch = me.switchN.getBoolValue();
switch != me.lastswitch or return;
me.lastswitch = switch;
me.loopid += 1;
if (me.continuous or !switch) {
me.stateN.setBoolValue(switch);
} elsif (switch) {
me.stateN.setBoolValue(0);
me.index = 0;
me.count = me.seqcount;
me._loop_(me.loopid);
}
},
2008-10-09 17:20:27 +00:00
_loop_: func(id) {
id == me.loopid or return;
if (!me.count) {
me.loopid += 1;
me.stateN.setBoolValue(me.endstate);
return;
}
me.stateN.setBoolValue(me.index == 2 * int(me.index / 2));
settimer(func me._loop_(id), me.pattern[me.index]);
if ((me.index += 1) >= size(me.pattern)) {
me.index = 0;
if (me.count > 0)
me.count -= 1;
}
},
};
# lowpass
# ==============================================================================
# class that implements a variable-interval EWMA (Exponentially Weighted
# Moving Average) lowpass filter with characteristics independent of the
# frame rate.
#
# SYNOPSIS:
# lowpass.new(<coefficient>);
#
# EXAMPLE:
# var lp = aircraft.lowpass.new(1.5);
# print(lp.filter(10)); # prints 10
# print(lp.filter(0));
#
var lowpass = {
2008-10-09 17:20:27 +00:00
new: func(coeff) {
var m = { parents: [lowpass] };
m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0");
m.value = nil;
return m;
},
# filter(raw_value) -> push new value, returns filtered value
2008-10-09 17:20:27 +00:00
filter: func(v) {
me.filter = me._filter_;
me.value = v;
},
# get() -> returns filtered value
2008-10-09 17:20:27 +00:00
get: func {
me.value;
},
# set() -> sets new average and returns it
2008-10-09 17:20:27 +00:00
set: func(v) {
me.value = v;
},
2008-10-09 17:20:27 +00:00
_filter_: func(v) {
var dt = getprop("/sim/time/delta-sec");
var c = dt / (me.coeff + dt);
me.value = v * c + me.value * (1 - c);
},
};
# angular lowpass
# ==============================================================================
# same as above, but for angles. Filters sin/cos separately and calculates the
# angle again from them. This avoids unexpected jumps from 179.99 to -180 degree.
#
var angular_lowpass = {
2008-10-09 17:20:27 +00:00
new: func(coeff) {
var m = { parents: [angular_lowpass] };
m.sin = lowpass.new(coeff);
m.cos = lowpass.new(coeff);
m.value = nil;
return m;
},
2008-10-09 17:20:27 +00:00
filter: func(v) {
v *= D2R;
me.value = math.atan2(me.sin.filter(math.sin(v)), me.cos.filter(math.cos(v))) * R2D;
},
2008-10-09 17:20:27 +00:00
set: func(v) {
v *= D2R;
me.sin.set(math.sin(v));
me.cos.set(math.cos(v));
},
2008-10-09 17:20:27 +00:00
get: func {
me.value;
},
};
# data
# ==============================================================================
# class that loads and saves properties to aircraft-specific data files in
# ~/.fgfs/aircraft-data/ (Unix) or %APPDATA%\flightgear.org\aircraft-data\.
# There's no public constructor, as the only needed instance gets created
# by the system.
#
# SYNOPSIS:
# data.add(<properties>);
# data.save([<interval>])
#
# properties ... about any combination of property nodes (props.Node)
# or path name strings, or lists or hashes of them,
# lists of lists of them, etc.
# interval ... save in <interval> minutes intervals, or only once
# if 'nil' or empty (and again at reinit/exit)
#
# SIGNALS:
# /sim/signals/save ... set to 'true' right before saving. Can be used
# to update values that are to be saved
#
# EXAMPLE:
# var p = props.globals.getNode("/sim/model", 1);
# var vec = [p, p];
# var hash = {"foo": p, "bar": p};
#
# # add properties
# aircraft.data.add("/sim/fg-root", p, "/sim/fg-home");
# aircraft.data.add(p, vec, hash, "/sim/fg-root");
#
# # now save only once (and at exit/reinit, which is automatically done)
2007-02-07 17:06:52 +00:00
# aircraft.data.save();
#
2007-02-07 17:06:52 +00:00
# # or save now and every 30 sec (and at exit/reinit)
# aircraft.data.save(0.5);
#
var data = {
2008-10-09 17:20:27 +00:00
init: func {
me.path = getprop("/sim/fg-home") ~ "/aircraft-data/" ~ getprop("/sim/aircraft") ~ ".xml";
me.signalN = props.globals.getNode("/sim/signals/save", 1);
me.catalog = [];
me.loopid = 0;
me.interval = 0;
setlistener("/sim/signals/reinit", func(n) { n.getBoolValue() and me._save_() });
setlistener("/sim/signals/exit", func me._save_());
},
2008-10-09 17:20:27 +00:00
load: func {
if (io.stat(me.path) != nil) {
printlog("info", "loading aircraft data from ", me.path);
io.read_properties(me.path, props.globals);
}
},
2008-10-09 17:20:27 +00:00
save: func(v = nil) {
me.loopid += 1;
2007-06-20 15:16:29 +00:00
if (v == nil) {
me._save_();
} else {
me.interval = 60 * v;
me._loop_(me.loopid);
}
},
2008-10-09 17:20:27 +00:00
_loop_: func(id) {
id == me.loopid or return;
me._save_();
settimer(func me._loop_(id), me.interval);
},
2008-10-09 17:20:27 +00:00
_save_: func {
size(me.catalog) or return;
printlog("debug", "saving aircraft data to ", me.path);
me.signalN.setBoolValue(1);
var data = props.Node.new();
foreach (var c; me.catalog) {
if (c[0] == `/`)
c = substr(c, 1);
props.copy(props.globals.getNode(c, 1), data.getNode(c, 1));
}
io.write_properties(me.path, data);
},
2008-10-09 17:20:27 +00:00
add: func(p...) {
foreach (var n; props.nodeList(p))
append(me.catalog, n.getPath());
},
};
# timer
# ==============================================================================
# class that implements timer that can be started, stopped, reset, and can
# have its value saved to the aircraft specific data file. Saving the value
# is done automatically by the aircraft.Data class.
#
# SYNOPSIS:
# timer.new(<property> [, <resolution:double> [, <save:bool>]])
#
# <property> ... property path or props.Node hash that holds the timer value
# <resolution> ... timer update resolution -- interval in seconds in which the
# timer property is updated while running (default: 1 s)
# <save> ... bool that defines whether the timer value should be saved
# and restored next time, as needed for Hobbs meters
# (default: 1)
#
# EXAMPLES:
# var hobbs_turbine = aircraft.timer.new("/sim/time/hobbs/turbine[0]", 60);
# hobbs_turbine.start();
#
# aircraft.timer.new("/sim/time/hobbs/battery", 60).start(); # anonymous timer
#
var timer = {
2008-10-09 17:20:27 +00:00
new: func(prop, res = 1, save = 1) {
var m = { parents: [timer] };
m.node = makeNode(prop);
if (m.node.getType() == "NONE")
m.node.setDoubleValue(0);
me.systimeN = props.globals.getNode("/sim/time/elapsed-sec", 1);
m.last_systime = nil;
m.interval = res;
m.loopid = 0;
m.running = 0;
if (save) {
data.add(m.node);
m.saveL = setlistener("/sim/signals/save", func m._save_());
} else {
m.saveL = nil;
}
return m;
},
2008-10-09 17:20:27 +00:00
del: func {
me.stop();
if (me.saveL != nil)
removelistener(me.saveL);
},
2008-10-09 17:20:27 +00:00
start: func {
me.running and return;
me.last_systime = me.systimeN.getValue();
me.interval != nil and me._loop_(me.loopid);
me.running = 1;
me;
},
2008-10-09 17:20:27 +00:00
stop: func {
me.running or return;
me.running = 0;
me.loopid += 1;
me._apply_();
me;
},
2008-10-09 17:20:27 +00:00
reset: func {
me.node.setDoubleValue(0);
me.last_systime = me.systimeN.getValue();
},
2008-10-09 17:20:27 +00:00
_apply_: func {
var sys = me.systimeN.getValue();
me.node.setDoubleValue(me.node.getValue() + sys - me.last_systime);
me.last_systime = sys;
},
2008-10-09 17:20:27 +00:00
_save_: func {
if (me.running)
me._apply_();
},
2008-10-09 17:20:27 +00:00
_loop_: func(id) {
id != me.loopid and return;
me._apply_();
settimer(func me._loop_(id), me.interval);
},
};
# livery
# =============================================================================
# Class that maintains livery XML files (see English Electric Lightning for an
# example). The last used livery is saved on exit and restored next time. Livery
# files are regular PropertyList XML files whose properties are copied to the
2008-10-19 21:12:57 +00:00
# main tree.
#
# SYNOPSIS:
# livery.init(<livery-dir> [, <name-path> [, <sort-path>]]);
#
# <livery-dir> ... directory with livery XML files, relative to $FG_ROOT
# <name-path> ... property path to the livery name in the livery files
2008-10-19 21:12:57 +00:00
# and the property tree (default: sim/model/livery/name)
# <sort-path> ... property path to the sort criterion (default: same as
# <name-path> -- that is: alphabetic sorting)
#
# EXAMPLE:
# aircraft.livery.init("Aircraft/Lightning/Models/Liveries",
# "sim/model/livery/variant",
# "sim/model/livery/index"); # optional
#
# aircraft.livery.dialog.toggle();
# aircraft.livery.select("OEBH");
# aircraft.livery.next();
#
var livery = {
init: func(dir, nameprop = "sim/model/livery/name", sortprop = nil) {
2008-10-19 21:12:57 +00:00
me.parents = [gui.OverlaySelector.new("Select Livery", dir, nameprop,
sortprop, "sim/model/livery/file")];
me.dialog = me.parents[0];
},
};
# livery_update
# =============================================================================
# Class for maintaining liveries in MP aircraft. It is used in Nasal code that's
# embedded in aircraft animation XML files, and checks in intervals whether the
# parent aircraft has changed livery, in which case it changes the livery
# in the remote aircraft accordingly. This class is a wrapper for overlay_update.
#
# SYNOPSIS:
# livery_update.new(<livery-dir> [, <interval:10> [, <func>]]);
#
# <livery-dir> ... directory with livery files, relative to $FG_ROOT
# <interval> ... checking interval in seconds (default: 10)
# <func> ... callback function that's called with the ./sim/model/livery/file
# contents as argument whenever the livery has changed. This can
# be used for post-processing.
#
# EXAMPLE:
# <nasal>
# <load>
# var livery_update = aircraft.livery_update.new(
# "Aircraft/R22/Models/Liveries", 30,
# func print("R22 livery update"));
# </load>
#
# <unload>
# livery_update.stop();
# </unload>
# </nasal>
#
var livery_update = {
new: func(liveriesdir, interval = 10.01, callback = nil) {
var m = { parents: [livery_update, overlay_update.new()] };
m.parents[1].add(liveriesdir, "sim/model/livery/file", callback);
m.parents[1].interval = interval;
return m;
},
stop: func {
me.parents[1].stop();
},
};
# overlay_update
# =============================================================================
# Class for maintaining overlays in MP aircraft. It is used in Nasal code that's
# embedded in aircraft animation XML files, and checks in intervals whether the
# parent aircraft has changed an overlay, in which case it copies the respective
# overlay to the aircraft's root directory.
#
# SYNOPSIS:
# livery_update.new();
# livery_update.add(<overlay-dir>, <property> [, <callback>]);
#
# <overlay-dir> ... directory with overlay files, relative to $FG_ROOT
# <property> ... MP property where the overlay file name can be found
# (usually one of the sim/multiplay/generic/string properties)
# <callback> ... callback function that's called with two arguments:
# the file name (without extension) and the overlay directory
#
# EXAMPLE:
# <nasal>
# <load>
# var update = aircraft.overlay_update.new();
# update.add("Aircraft/F4U/Models/Logos", "sim/multiplay/generic/string");
# </load>
#
# <unload>
# update.stop();
# </unload>
# </nasal>
#
var overlay_update = {
new: func {
var m = { parents: [overlay_update] };
m.root = cmdarg();
m.data = {};
m.interval = 10.01;
if (m.root.getName() == "multiplayer")
m._loop_();
return m;
},
add: func(path, prop, callback = nil) {
var path = string.normpath(getprop("/sim/fg-root") ~ '/' ~ path) ~ '/';
me.data[path] = [me.root.initNode(prop, ""), "",
typeof(callback) == "func" ? callback : func nil];
return me;
},
2008-10-09 17:20:27 +00:00
stop: func {
me._loop_ = func nil;
},
2008-10-09 17:20:27 +00:00
_loop_: func {
foreach (var path; keys(me.data)) {
var v = me.data[path];
var file = v[0].getValue();
if (file != v[1]) {
io.read_properties(path ~ file ~ ".xml", me.root);
v[2](v[1] = file, path);
}
}
settimer(func me._loop_(), me.interval);
},
};
# steering
# =============================================================================
# Class that implements differential braking depending on rudder position.
# Note that this overrides the controls.applyBrakes() wrapper. If you need
# your own version, then override it again after the steering.init() call.
#
# SYNOPSIS:
# steering.init([<property> [, <threshold>]]);
#
# <property> ... property path or props.Node hash that enables/disables
# brake steering (usually bound to the js trigger button)
# <threshold> ... defines range (+- threshold) around neutral rudder
# position in which both brakes are applied
#
# EXAMPLES:
# aircraft.steering.init("/controls/gear/steering", 0.2);
# aircraft.steering.init();
#
var steering = {
2008-10-09 17:20:27 +00:00
init: func(switch = "/controls/gear/brake-steering", threshold = 0.3) {
me.threshold = threshold;
me.switchN = makeNode(switch);
me.switchN.setBoolValue(me.switchN.getBoolValue());
me.leftN = props.globals.getNode("/controls/gear/brake-left", 1);
me.rightN = props.globals.getNode("/controls/gear/brake-right", 1);
me.rudderN = props.globals.getNode("/controls/flight/rudder", 1);
me.loopid = 0;
controls.applyBrakes = func(v, w = 0) {
2008-09-26 22:48:48 +00:00
if (w < 0)
steering.leftN.setValue(v);
elsif (w > 0)
steering.rightN.setValue(v);
else
2008-09-26 22:53:57 +00:00
steering.switchN.setValue(v);
}
setlistener(me.switchN, func(n) {
me.loopid += 1;
if (n.getValue())
me._loop_(me.loopid);
else
me.setbrakes(0, 0);
}, 1);
},
2008-10-09 17:20:27 +00:00
_loop_: func(id) {
id == me.loopid or return;
var rudder = me.rudderN.getValue();
if (rudder > me.threshold)
me.setbrakes(0, rudder);
elsif (rudder < -me.threshold)
me.setbrakes(-rudder, 0);
else
me.setbrakes(1, 1);
settimer(func me._loop_(id), 0);
},
2008-10-09 17:20:27 +00:00
setbrakes: func(left, right) {
me.leftN.setDoubleValue(left);
me.rightN.setDoubleValue(right);
},
};
# autotrim
# =============================================================================
# Singleton class that supports quick trimming and compensates for the lack
# of resistance/force feedback in most joysticks. Normally the pilot trims such
# that no real or artificially generated (by means of servo motors and spring
# preloading) forces act on the stick/yoke and it is in a comfortable position.
# This doesn't work well on computer joysticks.
#
# SYNOPSIS:
# autotrim.start(); # on key/button press
# autotrim.stop(); # on key/button release (mod-up)
#
# USAGE:
# (1) move the stick such that the aircraft is in an orientation that
# you want to trim for (forward flight, hover, ...)
# (2) press autotrim button and keep it pressed
# (3) move stick/yoke to neutral position (center)
# (4) release autotrim button
#
var autotrim = {
2008-10-09 17:20:27 +00:00
init: func {
me.elevator = me.Trim.new("elevator");
me.aileron = me.Trim.new("aileron");
me.rudder = me.Trim.new("rudder");
me.loopid = 0;
me.active = 0;
},
2008-10-09 17:20:27 +00:00
start: func {
me.active and return;
me.active = 1;
me.elevator.start();
me.aileron.start();
me.rudder.start();
me._loop_(me.loopid += 1);
},
2008-10-09 17:20:27 +00:00
stop: func {
me.active or return;
me.active = 0;
me.loopid += 1;
me.update();
},
2008-10-09 17:20:27 +00:00
_loop_: func(id) {
id == me.loopid or return;
me.update();
settimer(func me._loop_(id), 0);
},
2008-10-09 17:20:27 +00:00
update: func {
me.elevator.update();
me.aileron.update();
me.rudder.update();
},
2008-10-09 17:20:27 +00:00
Trim: {
new: func(name) {
var m = { parents: [autotrim.Trim] };
m.trimN = props.globals.getNode("/controls/flight/" ~ name ~ "-trim", 1);
m.ctrlN = props.globals.getNode("/controls/flight/" ~ name, 1);
return m;
},
2008-10-09 17:20:27 +00:00
start: func {
me.last = me.ctrlN.getValue();
},
2008-10-09 17:20:27 +00:00
update: func {
var v = me.ctrlN.getValue();
me.trimN.setDoubleValue(me.trimN.getValue() + me.last - v);
me.last = v;
},
},
};
# tyre smoke
# =============================================================================
# Provides a property which can be used to contol particles used to simulate tyre
# smoke on landing. Weight on wheels, vertical speed, ground speed, ground friction
# factor are taken into account. Tyre slip is simulated by low pass filters.
#
# Modifications to the model file are required.
#
# Generic XML particle files are available, but are not mandatory
# (see Hawker Seahawk for an example).
#
# SYNOPSIS:
# aircraft.tyresmoke.new(<gear index>)
# <gear index> - the index of the gear to which the tyre smoke is attached
# aircraft.tyresmoke.update()
#
# EXAMPLE:
# var tyresmoke_0 = aircraft.tyresmoke.new(0);
# tyresmoke_0.update();
#
var tyresmoke = {
2008-10-09 17:20:27 +00:00
new: func(number) {
var m = { parents: [tyresmoke] };
2008-11-22 21:02:04 +00:00
me.vertical_speed = props.globals.initNode("velocities/vertical-speed-fps");
me.speed = props.globals.initNode("velocities/groundspeed-kt");
me.rain = props.globals.initNode("environment/metar/rain-norm");
var gear = props.globals.getNode("gear/gear[" ~ number ~ "]/");
m.wow = gear.initNode("wow");
m.tyresmoke = gear.initNode("tyre-smoke", 0, "BOOL");
m.friction_factor = gear.initNode("ground-friction-factor", 1);
m.sprayspeed = gear.initNode("sprayspeed-ms");
m.spray = gear.initNode("spray", 0, "BOOL");
m.spraydensity = gear.initNode("spray-density", 0, "DOUBLE");
if (getprop("sim/flight-model") == "jsb") {
var wheel_speed = "fdm/jsbsim/gear/unit[" ~ number ~ "]/wheel-speed-fps";
m.rollspeed = props.globals.initNode(wheel_speed);
m.get_rollspeed = func m.rollspeed.getValue() * 0.3043;
} else {
m.rollspeed = gear.initNode("rollspeed-ms");
m.get_rollspeed = func m.rollspeed.getValue();
}
m.lp = lowpass.new(2);
return m;
},
2008-10-09 17:20:27 +00:00
update: func {
var rollspeed = me.get_rollspeed();
var vert_speed = me.vertical_speed.getValue();
var groundspeed = me.speed.getValue();
var friction_factor = me.friction_factor.getValue();
var wow = me.wow.getValue();
var rain = me.rain.getValue();
var filtered_rollspeed = me.lp.filter(rollspeed);
var diff = math.abs(rollspeed - filtered_rollspeed);
var diff_norm = diff > 0 ? diff / rollspeed : 0;
# print("wow ", wow, " vert_speed ", vert_speed, " diff_norm ",
# diff_norm, " friction_factor ", friction_factor,
# " groundspeed ", groundspeed,
# " rain ", rain);
if (wow and vert_speed < -0.05 and diff_norm > 0.05
and friction_factor > 0.7 and groundspeed > 50
and rain < 0.20) {
me.tyresmoke.setValue(1);
me.spray.setValue(0);
} elsif (wow and groundspeed > 5 and rain >= 0.20) {
me.tyresmoke.setValue(0);
me.spray.setValue(1);
me.sprayspeed.setValue(rollspeed * 6);
me.spraydensity.setValue(rain * groundspeed);
} else {
me.tyresmoke.setValue(0);
me.spray.setValue(0);
me.sprayspeed.setValue(0);
me.spraydensity.setValue(0);
}
},
};
2008-10-03 10:48:39 +00:00
# teleport
# =============================================================================
# Usage: aircraft.teleport(lat:48.3, lon:32.4, alt:5000);
#
var teleport = func(airport = "", runway = "", lat = -9999, lon = -9999, alt = 0,
speed = 0, distance = 0, azimuth = 0, glideslope = 0, heading = 9999) {
setprop("/sim/presets/airport-id", airport);
setprop("/sim/presets/runway", runway);
setprop("/sim/presets/latitude-deg", lat);
setprop("/sim/presets/longitude-deg", lon);
setprop("/sim/presets/altitude-ft", alt);
setprop("/sim/presets/airspeed-kt", speed);
setprop("/sim/presets/offset-distance-nm", distance);
setprop("/sim/presets/offset-azimuth-nm", azimuth);
setprop("/sim/presets/glideslope-deg", glideslope);
setprop("/sim/presets/heading-deg", heading);
fgcommand("presets-commit");
}
# HUD control class to handle both HUD implementations
# ==============================================================================
#
var HUD = {
2008-10-09 17:20:27 +00:00
init: func {
me.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1);
me.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1);
me.currcolN = props.globals.getNode("/sim/hud/current-color", 1);
me.paletteN = props.globals.getNode("/sim/hud/palette", 1);
me.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1);
me.currentN = me.vis0N;
},
2008-10-09 17:20:27 +00:00
cycle_color: func { # h-key
if (!me.currentN.getBoolValue()) # if off, turn on
return me.currentN.setBoolValue(1);
var i = me.currcolN.getValue() + 1; # if through, turn off
if (i < 0 or i >= size(me.paletteN.getChildren("color"))) {
me.currentN.setBoolValue(0);
me.currcolN.setIntValue(0);
} else { # otherwise change color
me.currentN.setBoolValue(1);
me.currcolN.setIntValue(i);
}
},
2008-10-09 17:20:27 +00:00
cycle_brightness: func { # H-key
me.is_active() or return;
var br = me.brightnessN.getValue() - 0.2;
me.brightnessN.setValue(br > 0.01 ? br : 1);
},
2008-10-09 17:20:27 +00:00
normal_type: func { # i-key
me.is_active() or return;
me.oldinit1();
me.vis0N.setBoolValue(1);
me.vis1N.setBoolValue(0);
me.currentN = me.vis0N;
},
2008-10-09 17:20:27 +00:00
cycle_type: func { # I-key
me.is_active() or return;
if (me.currentN == me.vis0N) {
me.vis0N.setBoolValue(0);
me.vis1N.setBoolValue(1);
me.currentN = me.vis1N;
} elsif (me.currentN == me.vis1N) {
me.vis0N.setBoolValue(1);
me.vis1N.setBoolValue(0);
me.oldinit2();
me.currentN = me.vis0N;
}
},
oldinit1: func {
fgcommand("hud-init");
},
oldinit2: func {
fgcommand("hud-init2");
},
is_active: func {
me.vis0N.getValue() or me.vis1N.getValue();
},
};
# module initialization
# ==============================================================================
#
_setlistener("/sim/signals/nasal-dir-initialized", func {
props.globals.initNode("/sim/time/delta-sec", 0);
props.globals.initNode("/sim/time/delta-realtime-sec", 0.00000001);
HUD.init();
data.init();
autotrim.init();
if (getprop("/sim/startup/save-on-exit")) {
data.load();
var n = props.globals.getNode("/sim/aircraft-data");
if (n != nil)
foreach (var c; n.getChildren("path"))
if (c.getType() != "NONE")
data.add(c.getValue());
} else {
data._save_ = func nil;
data._loop_ = func nil;
}
});