1
0
Fork 0
fgdata/Compositor/Shaders/ALS/bowwave.frag

450 lines
13 KiB
GLSL
Raw Normal View History

// This shader is mostly an adaptation of the shader found at
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
// © Michael Horsch - 2005
// Major update and revisions - 2011-10-07
// © Emilian Huminiuc and Vivian Meazza
// Optimisation - 2012-5-05
// © Emilian Huminiuc and Vivian Meazza
// Ported to the Atmospheric Light Scattering Framework
// by Thorsten Renk, Aug. 2013
#version 120
#define fps2kts 0.5925
uniform float fg_Fcoef;
uniform sampler2D water_normalmap;
uniform sampler2D water_reflection;
uniform sampler2D water_dudvmap;
uniform sampler2D water_reflection_grey;
uniform sampler2D sea_foam;
uniform sampler2D alpha_tex;
uniform sampler2D bowwave_nmap;
uniform float saturation, Overcast, WindE, WindN, spd, hdg;
uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4;
uniform int Status;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt;
uniform float avisibility;
uniform float visibility;
uniform float overcast;
uniform float scattering;
uniform float ground_scattering;
uniform float cloud_self_shading;
uniform float eye_alt;
uniform float fogstructure;
uniform float ice_cover;
uniform float sea_r;
uniform float sea_g;
uniform float sea_b;
uniform int quality_level;
varying vec4 waterTex1; //moving texcoords
varying vec4 waterTex2; //moving texcoords
varying vec3 viewerdir;
varying vec3 lightdir;
varying vec3 normal;
varying vec3 relPos;
varying float earthShade;
varying float yprime_alt;
varying float mie_angle;
varying float steepness;
varying float flogz;
vec3 specular_light;
float fog_func (in float targ, in float alt);
vec3 get_hazeColor(in float light_arg);
vec3 filter_combined (in vec3 color) ;
const float terminator_width = 200000.0;
const float EarthRadius = 5800000.0;
/////// functions /////////
float normalize_range(float _val)
{
if (_val > 180.0)
return _val - 360.0;
else
return _val;
}
void relWind(out float rel_wind_speed_kts, out float rel_wind_from_rad)
{
//calculate the carrier speed north and east in kts
float speed_north_kts = cos(radians(hdg)) * spd ;
float speed_east_kts = sin(radians(hdg)) * spd ;
//calculate the relative wind speed north and east in kts
float rel_wind_speed_from_east_kts = WindE*fps2kts + speed_east_kts;
float rel_wind_speed_from_north_kts = WindN*fps2kts + speed_north_kts;
//combine relative speeds north and east to get relative windspeed in kts
rel_wind_speed_kts = sqrt(rel_wind_speed_from_east_kts*rel_wind_speed_from_east_kts
+ rel_wind_speed_from_north_kts*rel_wind_speed_from_north_kts);
//calculate the relative wind direction
float rel_wind_from_deg = degrees(atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts));
// rel_wind_from_rad = atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts);
float rel_wind = rel_wind_from_deg - hdg;
rel_wind = normalize_range(rel_wind);
rel_wind_from_rad = radians(rel_wind);
}
void rotationmatrix(in float angle, out mat4 rotmat)
{
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
sin( angle ), cos( angle ), 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
x = x - 0.5;
// use the asymptotics to shorten computations
if (x > 30.0) {return e;}
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
// this determines how light is attenuated in the distance
// physically this should be exp(-arg) but for technical reasons we use a sharper cutoff
// for distance > visibility
//////////////////////
void main(void)
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
mat4 RotationMatrix;
float relWindspd=0;
float relWinddir=0;
float dist = length(relPos);
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
float effective_scattering = min(scattering, cloud_self_shading);
// compute relative wind speed and direction
relWind (relWindspd, relWinddir);
rotationmatrix(relWinddir, RotationMatrix);
// compute direction to viewer
vec3 E = normalize(viewerdir);
// compute direction to light source
vec3 L = normalize(lightdir);
// half vector
vec3 H = normalize(L + E);
const float water_shininess = 240.0;
// approximate cloud cover
float cover = 0.0;
//bool Status = true;
float windEffect = relWindspd; //wind speed in kt
// float windEffect = sqrt(pow(abs(WindE),2)+pow(abs(WindN),2)) * 0.6; //wind speed in kt
float windScale = 15.0/(5.0 + windEffect); //wave scale
float waveRoughness = 0.05 + smoothstep(0.0, 50.0, windEffect); //wave roughness filter
if (Status == 1){
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4);
} else {
// hack to allow for Overcast not to be set by Local Weather
if (Overcast == 0){
cover = 5;
} else {
cover = Overcast * 5;
}
}
//vec4 viewt = normalize(waterTex4);
vec4 viewt = vec4(-E, 0.0) * 0.6;
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale * 2.0) * 2.0 - 1.0;
vec4 dist1 = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)* windScale * 2.0) * 2.0 - 1.0;
vec4 fdist = normalize(dist1);
fdist = -fdist;
fdist *= sca;
//normalmap
rotationmatrix(-relWinddir, RotationMatrix);
vec4 nmap0 = texture2D(water_normalmap, vec2((waterTex1 + disdis*sca2) * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0;
vec4 nmap2 = texture2D(water_normalmap, vec2(waterTex2 * tscale * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0;
vec4 nmap3 = texture2D(bowwave_nmap, gl_TexCoord[0].st) * 2.0 - 1.0;
vec4 vNorm = normalize(mix(nmap3, nmap0 + nmap2, 0.3 )* waveRoughness);
vNorm = -vNorm;
//load reflection
vec4 tmp = vec4(lightdir, 0.0);
vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ;
vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ;
vec4 refl ;
// cover = 0;
/*if(cover >= 1.5){
refl= normalize(refTex);
}
else
{
refl = normalize(refTexGrey);
refl.r *= (0.75 + 0.15 * cover);
refl.g *= (0.80 + 0.15 * cover);
refl.b *= (0.875 + 0.125 * cover);
refl.a *= 1.0;
}
*/
refl.r = sea_r;
refl.g = sea_g;
refl.b = sea_b;
refl.a = 1.0;
float intensity;
// de-saturate for reduced light
refl.rgb = mix(refl.rgb, vec3 (0.248, 0.248, 0.248), 1.0 - smoothstep(0.1, 0.8, ground_scattering));
// de-saturate light for overcast haze
intensity = length(refl.rgb);
refl.rgb = mix(refl.rgb, intensity * vec3 (1.0, 1.0, 1.0), 0.5 * smoothstep(0.1, 0.9, overcast));
vec3 N0 = vec3(texture2D(water_normalmap, vec2((waterTex1 + disdis*sca2)* RotationMatrix) * windScale * 2.0) * 2.0 - 1.0);
vec3 N1 = vec3(texture2D(water_normalmap, vec2(waterTex2 * tscale * RotationMatrix ) * windScale * 2.0) * 2.0 - 1.0);
vec3 N2 = vec3(texture2D(bowwave_nmap, gl_TexCoord[0].st)*2.0-1.0);
//vec3 Nf = normalize((normal+N0+N1)*waveRoughness);
vec3 N = normalize(mix(normal+N2, normal+N0+N1, 0.3)* waveRoughness);
N = -N;
// specular
specular_light = gl_Color.rgb;
vec3 specular_color = vec3(specular_light)
* pow(max(0.0, dot(N, H)), water_shininess) * 6.0;
vec4 specular = vec4(specular_color, 0.5);
specular = specular * saturation * 0.3;
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
vec4 alpha0 = texture2D(alpha_tex, gl_TexCoord[0].st);
//calculate final colour
vec4 ambient_light;
ambient_light.rgb = max(specular_light.rgb, vec3(0.1, 0.1, 0.1));
ambient_light.a = 1.0;
vec4 finalColor;
finalColor = refl + specular * smoothstep(0.3, 0.6, ground_scattering);
//add foam
float foamSlope = 0.05 + 0.01 * windScale;
//float waveSlope = mix(N0.g, N1.g, 0.25);
vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 50.0);
float waveSlope = N.g;
if (windEffect >= 12.0)
if (waveSlope >= foamSlope){
finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(foamSlope, 0.5, N.g));
}
//generate final colour
finalColor *= ambient_light;//+ alpha0 * 0.35;
float delta_z = hazeLayerAltitude - eye_alt;
if (dist > 40.0)
{
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
// angle with horizon
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) // we look down
{
distance_in_layer = dist;
vAltitude = min(distance_in_layer,min(visibility,avisibility)) * ct;
delta_zv = delta_z - vAltitude;
}
else // we may look through upper layer edge
{
H = dist * ct;
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
else {distance_in_layer = dist;}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
}
else // we see the layer from above, delta_z < 0.0
{
H = dist * -ct;
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
{
distance_in_layer = 0.0;
delta_zv = 0.0;
}
else
{
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
float eqColorFactor;
if (visibility < avisibility)
{
if (quality_level > 3)
{
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility ));
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/visibility);
}
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
}
else
{
if (quality_level > 3)
{
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility ));
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
}
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
}
transmission = fog_func(transmission_arg, eye_alt);
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// now dim the light for haze
float eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt);
// Mie-like factor
if (lightArg < 10.0)
{intensity = length(hazeColor);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
}
// high altitude desaturation of the haze color
intensity = length(hazeColor);
if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly
{
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, eye_alt)));
// blue hue of haze
hazeColor.x = hazeColor.x * 0.83;
hazeColor.y = hazeColor.y * 0.9;
// additional blue in indirect light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
// change haze color to blue hue for strong fogging
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
}
// don't let the light fade out too rapidly
lightArg = (terminator + 200000.0)/100000.0;
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
hazeColor.rgb *= eqColorFactor * eShade;
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
finalColor.rgb = mix(hazeColor, finalColor.rgb,transmission);
}
finalColor.rgb = filter_combined(finalColor.rgb);
gl_FragColor = vec4(finalColor.rgb, alpha0.a * 1.35);
// logarithmic depth
gl_FragDepth = log2(flogz) * fg_Fcoef * 0.5;
}