1
0
Fork 0
fgdata/Shaders/water-gbuffer.frag

204 lines
8.3 KiB
GLSL
Raw Normal View History

// This shader is mostly an adaptation of the shader found at
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
// <20> Michael Horsch - 2005
// Major update and revisions - 2011-10-07
// <20> Emilian Huminiuc and Vivian Meazza
// Optimisation - 2012-5-05
// Based on ideas by Thorsten Renk
// <20> Emilian Huminiuc and Vivian Meazza
#version 120
uniform sampler2D water_normalmap;
uniform sampler2D water_reflection;
uniform sampler2D water_dudvmap;
uniform sampler2D water_reflection_grey;
uniform sampler2D sea_foam;
uniform sampler2D perlin_normalmap;
uniform float saturation, Overcast, WindE, WindN;
uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4;
uniform float osg_SimulationTime;
uniform int Status;
varying vec4 waterTex1; //moving texcoords
varying vec4 waterTex2; //moving texcoords
varying vec3 viewerdir;
varying vec3 normal;
varying vec3 Vnormal;
varying vec3 VTangent;
varying vec3 VBinormal;
uniform float WaveFreq ;
uniform float WaveAmp ;
uniform float WaveSharp ;
uniform float normalmap_dds;
/////// functions /////////
void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shininess, float emission, float depth);
void rotationmatrix(in float angle, out mat4 rotmat)
{
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
sin( angle ), cos( angle ), 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
void main(void)
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
mat4 RotationMatrix;
// compute direction to viewer
vec3 E = normalize(viewerdir);
vec3 Normal = normalize(normal);
vec3 vNormal = normalize(Vnormal);
const float water_shininess = 240.0;
// approximate cloud cover
float cover = 0.0;
//bool Status = true;
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
float windScale = 15.0/(3.0 + windEffect); //wave scale
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
float waveRoughness = 0.05 + smoothstep(0.0, 20.0, windEffect); //wave roughness filter
float mixFactor = 0.75 - 0.15 * smoothstep(0.0, 40.0, windEffect);
mixFactor = clamp(mixFactor, 0.3, 0.8);
if (Status == 1){
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4);
} else {
// hack to allow for Overcast not to be set by Local Weather
if (Overcast == 0){
cover = 5;
} else {
cover = Overcast * 5;
}
}
vec4 viewt = vec4(-E, 0.0) * 0.6;
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0;
vec4 dist = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)* windScale) * 2.0 - 1.0;
dist *= (0.6 + 0.5 * smoothstep(0.0, 15.0, windEffect));
vec4 fdist = normalize(dist);
if (normalmap_dds > 0)
fdist = -fdist; //dds fix
fdist *= sca;
//normalmaps
rotationmatrix(radians(3.0 * windScale + 0.6 * sin(waterTex1.s * 0.2)), RotationMatrix);
vec4 nmap = texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0;
vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1/** RotationMatrix*/ + disdis * sca2) * windScale) * 2.0 - 1.0;
rotationmatrix(radians(-2.0 * windScale -0.4 * sin(waterTex1.s * 0.32)), RotationMatrix);
nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 1.5) * 2.0 - 1.0;
//nmap1 += texture2D(perlin_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0;
rotationmatrix(radians(1.5 * windScale + 0.3 * sin(waterTex1.s * 0.16)), RotationMatrix);
nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 2.1) * 2.0 - 1.0;
rotationmatrix(radians(-0.5 * windScale - 0.45 * sin(waterTex1.s * 0.28)), RotationMatrix);
nmap += texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 0.8) * 2.0 - 1.0;
rotationmatrix(radians(-1.2 * windScale - 0.35 * sin(waterTex1.s * 0.28)), RotationMatrix);
nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix* tscale) * windScale * 1.7) * 2.0 - 1.0;
nmap1 += texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * tscale) * windScale) * 2.0 - 1.0;
nmap *= windEffect_low;
nmap1 *= windEffect_low;
// mix water and noise, modulated by factor
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
if (normalmap_dds > 0)
vNorm = -vNorm; //dds fix
//load reflection
//vec4 tmp = vec4(lightdir, 0.0);
vec4 tmp = vec4(0.0);
vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ;
vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ;
vec4 refl ;
// cover = 0;
if(cover >= 1.5){
refl = normalize(refTex);
refl.a = 1.0;
}
else
{
refl = normalize(refTexGrey);
refl.r *= (0.75 + 0.15 * cover);
refl.g *= (0.80 + 0.15 * cover);
refl.b *= (0.875 + 0.125 * cover);
refl.a = 1.0;
}
rotationmatrix(radians(2.1* windScale + 0.25 * sin(waterTex1.s *0.14)), RotationMatrix);
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1* RotationMatrix + disdis * sca2) * windScale * 1.15) * 2.0 - 1.0);
vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1/** RotationMatrix*/ + disdis * sca) * windScale) * 2.0 - 1.0);
rotationmatrix(radians(-1.5 * windScale -0.32 * sin(waterTex1.s *0.24)), RotationMatrix);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex2* RotationMatrix * tscale) * windScale * 1.8) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * tscale) * windScale) * 2.0 - 1.0);
rotationmatrix(radians(3.8 * windScale + 0.45 * sin(waterTex1.s *0.32)), RotationMatrix);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale * 0.85) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2/** RotationMatrix*/ * (tscale + sca2)) * windScale) * 2.0 - 1.0);
rotationmatrix(radians(-2.8 * windScale - 0.38 * sin(waterTex1.s * 0.26)), RotationMatrix);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale * 2.1) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 /** RotationMatrix*/ + disdis * sca) * windScale) * 2.0 - 1.0);
N0 *= windEffect_low;
N1 *= windEffect_low;
vec3 N2 = normalize(mix(N0, N1, mixFactor) * waveRoughness);
Normal = normalize(N2.x * VTangent + N2.y * VBinormal + N2.z * Normal);
vNormal = normalize(mix(vNormal + N0, vNormal + N1, mixFactor) * waveRoughness);
if (normalmap_dds > 0){
Normal = -Normal; //dds fix
vNormal = -vNormal;
}
// specular
//vec3 specular_color = vec3(gl_LightSource[0].diffuse)
// * pow(max(0.0, dot(N, H)), water_shininess) * 6.0;
//vec4 specular = vec4(specular_color, 0.5);
//specular = specular * saturation * 0.3 ;
//float specular = saturation * 0.3;
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
//calculate final colour
//vec4 ambient_light = gl_LightSource[0].diffuse;
vec4 finalColor = refl;
float foamSlope = 0.10 + 0.1 * windScale;
vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0);
float waveSlope = vNormal.g;
if (windEffect >= 8.0)
if (waveSlope >= foamSlope){
finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, vNormal.g));
}
float emission = dot( gl_FrontLightModelProduct.sceneColor.rgb + gl_FrontMaterial.emission.rgb,
vec3( 0.3, 0.59, 0.11 )
);
float specular = smoothstep(0.0, 3.5, cover);
encode_gbuffer(Normal, finalColor.rgb, 1, specular, 128, emission, gl_FragCoord.z);
}