1
0
Fork 0
fgdata/Aircraft/Instruments-3d/tc/tc.xml

73 lines
1.7 KiB
XML
Raw Normal View History

<?xml version="1.0"?>
<PropertyList>
<path>tc.ac</path>
<animation>
<type>material</type>
<object-name>Ball</object-name>
<object-name>Face</object-name>
<object-name>Airplane</object-name>
<emission>
<red>1.0</red>
<green>0.2</green>
<blue>0.0</blue>
<factor-prop>/sim/model//material/instruments/factor</factor-prop>
</emission>
</animation>
<animation>
<type>rotate</type>
2004-02-22 17:50:23 +00:00
<object-name>Airplane</object-name>
<property>/instrumentation/turn-indicator/indicated-turn-rate</property>
<factor>20.0</factor>
<axis>
<x>-1</x>
<y>0</y>
<z>0</z>
</axis>
</animation>
<animation>
<type>rotate</type>
<object-name>Ball</object-name>
<property>/instrumentation/slip-skid-ball/indicated-slip-skid</property>
<factor>5.729</factor>
<!--
From the source for slip_skid_ball.cxx, the number returned is (-z_accel/y_accel)*10.
For small theta, theta~=tan(theta) when theta is in radians. So the angle of a "ball"
undergoing z_accel and y_accel hung on the end of a string makes with the verticle
will be approximately -z_accel/y_accel radians. Converting to degrees, multiply by
180/pi=57.29, or 5.729 times the returned value. Edited by Dave Perry, 2/26/06.
-->
<min-deg>-5</min-deg>
<max-deg>5</max-deg>
<center>
<x-m>0</x-m>
<y-m>0</y-m>
<z-m>0.25</z-m> <!-- Makes the radius of curvature for the glass tube ~10 inches -->
</center>
<axis>
<x>-1</x>
<y>0</y>
<z>0</z>
</axis>
</animation>
<animation>
<type>translate</type>
<object-name>Flag</object-name>
<property>/instrumentation/turn-indicator/spin</property>
<factor>0.0040</factor>
<axis>
<x>0</x>
<y>0</y>
<z>1</z>
</axis>
</animation>
</PropertyList>