1
0
Fork 0
fgdata/Shaders/urban-gbuffer.frag

227 lines
6.3 KiB
GLSL
Raw Normal View History

2012-04-09 16:52:24 +00:00
// -*- mode: C; -*-
// Licence: GPL v2
// Author: Frederic Bouvier.
// Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces
// Adapted from the paper and sources by M. Drobot in GPU Pro : Quadtree Displacement Mapping with Height Blending
#version 120
#extension GL_ATI_shader_texture_lod : enable
#extension GL_ARB_shader_texture_lod : enable
#define TEXTURE_MIP_LEVELS 10
#define TEXTURE_PIX_COUNT 1024 //pow(2,TEXTURE_MIP_LEVELS)
#define BINARY_SEARCH_COUNT 10
#define BILINEAR_SMOOTH_FACTOR 2.0
varying vec4 rawpos;
varying vec4 ecPosition;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec3 VBinormal;
varying vec3 Normal;
varying vec4 constantColor;
varying vec4 specular;
uniform sampler3D NoiseTex;
uniform sampler2D BaseTex;
uniform sampler2D NormalTex;
uniform sampler2D QDMTex;
uniform float depth_factor;
uniform float tile_size;
uniform float quality_level;
uniform float snowlevel;
const float scale = 1.0;
int linear_search_steps = 10;
int GlobalIterationCount = 0;
int gIterationCap = 64;
vec2 normal_encode(vec3 n);
2012-04-09 16:52:24 +00:00
void QDM(inout vec3 p, inout vec3 v)
{
const int MAX_LEVEL = TEXTURE_MIP_LEVELS;
const float NODE_COUNT = TEXTURE_PIX_COUNT;
const float TEXEL_SPAN_HALF = 1.0 / NODE_COUNT / 2.0;
float fDeltaNC = TEXEL_SPAN_HALF * depth_factor;
vec3 p2 = p;
float level = MAX_LEVEL;
vec2 dirSign = (sign(v.xy) + 1.0) * 0.5;
GlobalIterationCount = 0;
float d = 0.0;
while (level >= 0.0 && GlobalIterationCount < gIterationCap)
{
vec4 uv = vec4(p2.xyz, level);
d = texture2DLod(QDMTex, uv.xy, uv.w).w;
if (d > p2.z)
{
//predictive point of ray traversal
vec3 tmpP2 = p + v * d;
//current node count
float nodeCount = pow(2.0, (MAX_LEVEL - level));
//current and predictive node ID
vec4 nodeID = floor(vec4(p2.xy, tmpP2.xy)*nodeCount);
//check if we are crossing the current cell
if (nodeID.x != nodeID.z || nodeID.y != nodeID.w)
{
//calculate distance to nearest bound
vec2 a = p2.xy - p.xy;
vec2 p3 = (nodeID.xy + dirSign) / nodeCount;
vec2 b = p3.xy - p.xy;
vec2 dNC = (b.xy * p2.z) / a.xy;
//take the nearest cell
d = min(d,min(dNC.x, dNC.y))+fDeltaNC;
level++;
//use additional convergence speed-up
#ifdef USE_QDM_ASCEND_INTERVAL
if(frac(level*0.5) > EPSILON)
level++;
#elseif USE_QDM_ASCEND_CONST
level++;
#endif
}
p2 = p + v * d;
}
level--;
GlobalIterationCount++;
}
//
// Manual Bilinear filtering
//
float rayLength = length(p2.xy - p.xy) + fDeltaNC;
float dA = p2.z * (rayLength - BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;
float dB = p2.z * (rayLength + BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;
vec4 p2a = vec4(p + v * dA, 0.0);
vec4 p2b = vec4(p + v * dB, 0.0);
dA = texture2DLod(NormalTex, p2a.xy, p2a.w).w;
dB = texture2DLod(NormalTex, p2b.xy, p2b.w).w;
dA = abs(p2a.z - dA);
dB = abs(p2b.z - dB);
p2 = mix(p2a.xyz, p2b.xyz, dA / (dA + dB));
p = p2;
}
float ray_intersect_QDM(vec2 dp, vec2 ds)
{
vec3 p = vec3( dp, 0.0 );
vec3 v = vec3( ds, 1.0 );
QDM( p, v );
return p.z;
}
float ray_intersect_relief(vec2 dp, vec2 ds)
{
float size = 1.0 / float(linear_search_steps);
float depth = 0.0;
float best_depth = 1.0;
for(int i = 0; i < linear_search_steps - 1; ++i)
{
depth += size;
float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
if(best_depth > 0.996)
if(depth >= t)
best_depth = depth;
}
depth = best_depth;
const int binary_search_steps = 5;
for(int i = 0; i < binary_search_steps; ++i)
{
size *= 0.5;
float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
if(depth >= t)
{
best_depth = depth;
depth -= 2.0 * size;
}
depth += size;
}
return(best_depth);
}
float ray_intersect(vec2 dp, vec2 ds)
{
if ( quality_level >= 4.0 )
return ray_intersect_QDM( dp, ds );
else
return ray_intersect_relief( dp, ds );
}
void main (void)
{
if ( quality_level >= 3.0 ) {
linear_search_steps = 20;
}
vec3 ecPos3 = ecPosition.xyz / ecPosition.w;
vec3 V = normalize(ecPos3);
vec3 s = vec3(dot(V, VTangent), dot(V, VBinormal), dot(VNormal, -V));
vec2 ds = s.xy * depth_factor / s.z;
vec2 dp = gl_TexCoord[0].st - ds;
float d = ray_intersect(dp, ds);
vec2 uv = dp + ds * d;
vec3 N = texture2D(NormalTex, uv).xyz;
float emis = N.z;
N = N * 2.0 - 1.0;
2012-04-09 16:52:24 +00:00
N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy)));
float Nz = N.z;
N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal);
gl_FragData[0] = vec4( normal_encode(N), 0.0, 1.0 );
2012-04-09 16:52:24 +00:00
vec4 ambient_light = constantColor + vec4(gl_Color.rgb, 1.0);
// vec4 noisevec = texture3D(NoiseTex, (rawpos.xyz)*0.01*scale);
// vec4 nvL = texture3D(NoiseTex, (rawpos.xyz)*0.00066*scale);
2012-04-09 16:52:24 +00:00
// float n=0.06;
// n += nvL[0]*0.4;
// n += nvL[1]*0.6;
// n += nvL[2]*2.0;
// n += nvL[3]*4.0;
// n += noisevec[0]*0.1;
// n += noisevec[1]*0.4;
2012-04-09 16:52:24 +00:00
// n += noisevec[2]*0.8;
// n += noisevec[3]*2.1;
// n = mix(0.6, n, length(ecPosition.xyz) );
2012-04-09 16:52:24 +00:00
vec4 finalColor = texture2D(BaseTex, uv);
// finalColor = mix(finalColor, clamp(n+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0),
// step(0.8,Nz)*(1.0-emis)*smoothstep(snowlevel+300.0, snowlevel+360.0, (rawpos.z)+nvL[1]*3000.0));
// finalColor *= ambient_light;
2012-04-09 16:52:24 +00:00
vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depth_factor / s.z, 1.0 );
gl_FragData[1] = vec4( finalColor.rgb, 1.0 / 255.0 );
gl_FragData[2] = vec4( dot(specular.xyz,vec3(0.3, 0.59, 0.11 )), specular.w/128.0, 0.0, 1.0 );
2012-04-09 16:52:24 +00:00
if (dot(normal,-V) > 0.1) {
vec4 iproj = gl_ProjectionMatrix * p;
iproj /= iproj.w;
gl_FragDepth = (iproj.z+1.0)/2.0;
} else {
gl_FragDepth = gl_FragCoord.z;
}
2012-04-09 16:52:24 +00:00
}