1
0
Fork 0
fgdata/Shaders/HDR/aerial_perspective.glsl

95 lines
3 KiB
Text
Raw Normal View History

#version 330 core
uniform sampler2D aerial_perspective_tex;
uniform sampler2D transmittance_tex;
uniform vec3 fg_SunDirectionWorld;
uniform float fg_CameraDistanceToEarthCenter;
uniform float fg_SunZenithCosTheta;
uniform float fg_EarthRadius;
2023-04-13 03:57:01 +00:00
const float AP_SLICE_COUNT = 16.0;
const float AP_MAX_DEPTH = 128000.0;
2023-04-13 03:57:01 +00:00
const float AP_SLICE_WIDTH_PIXELS = 64.0;
const float AP_SLICE_SIZE = 1.0 / AP_SLICE_COUNT;
const float AP_TEXEL_WIDTH = 1.0 / (AP_SLICE_COUNT * AP_SLICE_WIDTH_PIXELS);
const float ATMOSPHERE_RADIUS = 6471e3;
// atmos_spectral.glsl
vec4 get_sun_spectral_irradiance();
vec3 linear_srgb_from_spectral_samples(vec4 L);
vec4 sample_aerial_perspective_slice(sampler2D lut, vec2 coord, float slice)
{
// Sample at the pixel center
float offset = slice * AP_SLICE_SIZE + AP_TEXEL_WIDTH * 0.5;
float x = coord.x * (AP_SLICE_SIZE - AP_TEXEL_WIDTH) + offset;
return texture(lut, vec2(x, coord.y));
}
vec4 sample_aerial_perspective(sampler2D lut, vec2 coord, float depth)
{
vec4 color;
float w = sqrt(clamp(depth / AP_MAX_DEPTH, 0.0, 1.0));
float x = w * AP_SLICE_COUNT;
if (x <= 1.0) {
// Handle special case of fragments behind the first slice
color = mix(vec4(0.0, 0.0, 0.0, 1.0),
sample_aerial_perspective_slice(lut, coord, 0),
x);
} else {
// Manually interpolate between slices
x -= 1.0;
color = mix(sample_aerial_perspective_slice(lut, coord, floor(x)),
sample_aerial_perspective_slice(lut, coord, ceil(x)),
fract(x));
}
return color;
}
vec4 get_aerial_perspective(vec2 coord, float depth)
{
return sample_aerial_perspective(aerial_perspective_tex, coord, depth);
}
vec3 mix_aerial_perspective(vec3 color, vec4 ap)
{
return color * ap.a + ap.rgb;
}
vec3 add_aerial_perspective(vec3 color, vec2 coord, float depth)
{
return mix_aerial_perspective(color, get_aerial_perspective(coord, depth));
}
/*
* Get the Sun radiance at a point 'p' in world space.
* We cannot use the Sun extraterrestial irradiance directly because it will be
* attenuated by the transmittance of the atmospheric medium.
*/
vec3 get_sun_radiance(vec3 p)
{
float distance_to_earth_center = length(p);
float normalized_altitude = (distance_to_earth_center - fg_EarthRadius)
/ (ATMOSPHERE_RADIUS - fg_EarthRadius);
vec3 zenith_dir = p / distance_to_earth_center;
float sun_cos_theta = dot(zenith_dir, fg_SunDirectionWorld);
float u = sun_cos_theta * 0.5 + 0.5;
float v = clamp(normalized_altitude, 0.0, 1.0);
vec4 transmittance = texture(transmittance_tex, vec2(u, v));
vec4 L = get_sun_spectral_irradiance() * transmittance;
return linear_srgb_from_spectral_samples(L);
}
vec3 get_sun_radiance_sea_level()
{
vec2 uv = vec2(fg_SunZenithCosTheta * 0.5 + 0.5, 0.0);
vec4 transmittance = texture(transmittance_tex, uv);
vec4 L = get_sun_spectral_irradiance() * transmittance;
return linear_srgb_from_spectral_samples(L);
}