1
0
Fork 0
fgdata/Aircraft/Instruments-3d/radar2/radar2.nas

553 lines
19 KiB
Text
Raw Normal View History

# Radar2 and RWR routines.
# Alexis Bory (xiii)
# Every 0.05 seconde:
# [1] Generates a sweep scan pattern and when sweep direction changes, scans
# /AI/models for (aircrafts), (carriers), multiplayers. Creates a list of
# these targets, whenever they are in radar overall range and are valid.
# [2] RWR (Radar Warning Receiver) signals are then computed. RWR is included
# within the radar stuff to avoid redundancy.
# [3] At each loop the targets list is scanned and each target bearing is checked
# against the radar beam heading. If the target is within the radar beam, its
# display properties are updated. Two different displays are possible:
# B-scan like and PPI like.
# The target distance is then scored so the radar system can autotrack the
# nearest target.
# Every 0.1 seconde:
# [4] Computes HUD marker position and closure rate for the nearest target.
var ElapsedSec = props.globals.getNode("sim/time/elapsed-sec");
var DisplayRdr = props.globals.getNode("instrumentation/radar/display-rdr");
var AzField = props.globals.getNode("instrumentation/radar/az-field");
var RangeSelected = props.globals.getNode("instrumentation/radar/range-selected");
var RadarStandby = props.globals.getNode("instrumentation/radar/radar-standby");
var RadarStandbyMP = props.globals.getNode("sim/multiplay/generic/int[2]");
var SwpMarker = props.globals.getNode("instrumentation/radar2/sweep-marker-norm", 1);
var SwpDisplayWidth = props.globals.getNode("instrumentation/radar2/sweep-width-m");
var RngDisplayWidth = props.globals.getNode("instrumentation/radar2/range-width-m");
var PpiDisplayRadius = props.globals.getNode("instrumentation/radar2/radius-ppi-display-m");
var HudEyeDist = props.globals.getNode("instrumentation/radar2/hud-eye-dist-m");
var HudRadius = props.globals.getNode("instrumentation/radar2/hud-radius-m");
var HudTgtHDisplay = props.globals.getNode("instrumentation/radar2/hud/target-display", 1);
var HudTgt = props.globals.getNode("instrumentation/radar2/hud/target", 1);
var HudTgtTDev = props.globals.getNode("instrumentation/radar2/hud/target-total-deviation", 1);
var HudTgtTDeg = props.globals.getNode("instrumentation/radar2/hud/target-total-angle", 1);
var HudTgtClosureRate = props.globals.getNode("instrumentation/radar2/hud/closure-rate", 1);
var OurAlt = props.globals.getNode("position/altitude-ft");
var OurHdg = props.globals.getNode("orientation/heading-deg");
var OurRoll = props.globals.getNode("orientation/roll-deg");
var OurPitch = props.globals.getNode("orientation/pitch-deg");
var EcmOn = props.globals.getNode("instrumentation/ecm/on-off", 1);
var EcmAlert1 = props.globals.getNode("instrumentation/ecm/alert-type1", 1);
var EcmAlert2 = props.globals.getNode("instrumentation/ecm/alert-type2", 1);
var az_fld = AzField.getValue();
var l_az_fld = 0;
var r_az_fld = 0;
var swp_marker = nil; # Scan azimuth deviation, normalized (-1 --> 1).
var swp_deg = nil; # Scan azimuth deviation, in degree.
var swp_deg_last = 0; # Used to get sweep direction.
var swp_spd = 1.7;
var swp_dir = nil; # Sweep direction, 0 to left, 1 to right.
var swp_dir_last = 0;
var swp_diplay_width = SwpDisplayWidth.getValue(); # Length of the max azimuth range on the screen.
# used for the B-scan display and sweep markers.
var rng_diplay_width = SwpDisplayWidth.getValue(); # Length of the max range vertical width on the
# screen. used for the B-scan display.
var ppi_diplay_radius = PpiDisplayRadius.getValue(); # Length of the radial size
# of the PPI like display.
var hud_eye_dist = HudEyeDist.getValue(); # Distance eye <-> HUD plane.
var hud_radius = HudRadius.getValue(); # Used to clamp the nearest target marker.
var range_radar2 = 0;
var my_radarcorr = 0;
var wcs_mode = "rws"; #FIXME should handled as properties choice, not harcoded.
var tmp_nearest_rng = nil;
var tmp_nearest_u = nil;
var nearest_rng = 0;
var nearest_u = nil;
var our_true_heading = 0;
var our_alt = 0;
var Mp = props.globals.getNode("ai/models");
var tgts_list = [];
var cnt = 0; # Counter used for the scan sweep pattern
var cnt_hud = 0; # Counter used for the HUD update
# ECM warnings.
var ecm_alert1 = 0;
var ecm_alert2 = 0;
var ecm_alert1_last = 0;
var ecm_alert2_last = 0;
var u_ecm_signal = 0;
var u_ecm_signal_norm = 0;
var u_radar_standby = 0;
var u_ecm_type_num = 0;
init = func() {
var our_ac_name = getprop("sim/aircraft");
radardist.init();
my_radarcorr = radardist.my_maxrange( our_ac_name ); # Kilometers
settimer(rdr_loop, 0.5);
}
# Main loop ###############
var rdr_loop = func() {
var display_rdr = DisplayRdr.getBoolValue();
if ( display_rdr ) {
az_scan();
} elsif ( size(tgts_list) > 0 ) {
foreach( u; tgts_list ) {
u.set_display(0);
}
}
if (cnt_hud == 0.1) {
RadarStandbyMP.setIntValue(RadarStandby.getValue()); # Tell over MP if
# our radar is scaning or is in stanby.
hud_nearest_tgt();
cnt_hud = 0;
} else {
cnt_hud += 0.05;
}
settimer(rdr_loop, 0.05);
}
var az_scan = func() {
# Antena az scan.
var fld_frac = az_fld / 120;
var fswp_spd = swp_spd / fld_frac;
swp_marker = math.sin(cnt * fswp_spd) * fld_frac;
SwpMarker.setValue(swp_marker);
swp_deg = az_fld / 2 * swp_marker;
swp_dir = swp_deg < swp_deg_last ? 0 : 1;
if ( az_fld == nil ) { az_fld = 74 }
l_az_fld = - az_fld / 2;
r_az_fld = az_fld / 2;
var fading_speed = 0.015;
our_true_heading = OurHdg.getValue();
our_alt = OurAlt.getValue();
if (swp_dir != swp_dir_last) {
# Antena scan direction change. Max every 2 seconds. Reads the whole MP_list.
# TODO: Transient move for the sweep marker when changing az scan field.
az_fld = AzField.getValue();
range_radar2 = RangeSelected.getValue();
if ( range_radar2 == 0 ) { range_radar2 = 0.00000001 }
# Reset nearest_range score
nearest_u = tmp_nearest_u;
nearest_rng = tmp_nearest_rng;
tmp_nearest_rng = nil;
tmp_nearest_u = nil;
tgts_list = [];
var raw_list = Mp.getChildren();
foreach( var c; raw_list ) {
# FIXME: At that time a multiplayer node may have been deleted while still
# existing as a displayable target in the radar targets nodes.
var type = c.getName();
if (!c.getNode("valid", 1).getValue()) {
continue;
}
var HaveRadarNode = c.getNode("radar");
if (type == "multiplayer" or type == "tanker" and HaveRadarNode != nil) {
var u = Target.new(c);
u_ecm_signal = 0;
u_ecm_signal_norm = 0;
u_radar_standby = 0;
u_ecm_type_num = 0;
if ( u.Range != nil) {
var u_rng = u.get_range();
if (u_rng < range_radar2 ) {
u.get_deviation(our_true_heading);
if ( u.deviation > l_az_fld and u.deviation < r_az_fld ) {
append(tgts_list, u);
} else {
u.set_display(0);
}
} else {
u.set_display(0);
}
ecm_on = EcmOn.getBoolValue();
# Test if target has a radar. Compute if we are illuminated. This propery used by ECM
# over MP, should be standardized, like "ai/models/multiplayer[0]/radar/radar-standby".
if ( ecm_on) {
rwr(u); # TODO: override display when alert.
}
}
}
}
# Summarize ECM alerts.
if ( ecm_alert1 == 0 and ecm_alert1_last == 0 ) { EcmAlert1.setBoolValue(0) }
if ( ecm_alert2 == 0 and ecm_alert1_last == 0 ) { EcmAlert2.setBoolValue(0) }
ecm_alert1_last = ecm_alert1; # And avoid alert blinking at each loop.
ecm_alert2_last = ecm_alert2;
ecm_alert1 = 0;
ecm_alert2 = 0;
}
foreach( u; tgts_list ) {
var u_display = 0;
var u_fading = u.get_fading() - fading_speed;
if ( u_fading < 0 ) { u_fading = 0 }
if (( swp_dir and swp_deg_last < u.deviation and u.deviation <= swp_deg )
or ( ! swp_dir and swp_deg <= u.deviation and u.deviation < swp_deg_last )) {
u.get_bearing();
u.get_heading();
var horizon = u.get_horizon( our_alt );
var u_rng = u.get_range();
if ( u_rng < horizon and radardist.radis(u.string, my_radarcorr)) {
# Compute mp position in our B-scan like display. (Bearing/horizontal + Range/Vertical).
u.set_relative_bearing( swp_diplay_width / az_fld * u.deviation );
var factor_range_radar = rng_diplay_width / range_radar2; # Length of the distance range on the B-scan screen.
u.set_ddd_draw_range_nm( factor_range_radar * u_rng );
u_fading = 1;
u_display = 1;
# Compute mp position in our PPI like display.
factor_range_radar = ppi_diplay_radius / range_radar2; # Length of the radius range on the PPI like screen.
u.set_tid_draw_range_nm( factor_range_radar * u_rng );
# Compute first digit of mp altitude rounded to nearest thousand. (labels).
u.set_rounded_alt( rounding1000( u.get_altitude() ) / 1000 );
# Compute closure rate in Kts.
u.get_closure_rate();
# Check if u = nearest echo.
if ( tmp_nearest_rng == nil or u_rng < tmp_nearest_rng) {
tmp_nearest_u = u;
tmp_nearest_rng = u_rng;
}
}
u.set_display(u_display);
}
u.set_fading(u_fading);
}
swp_deg_last = swp_deg;
swp_dir_last = swp_dir;
cnt += 0.05;
}
var hud_nearest_tgt = func() {
# Computes nearest_u position in the HUD
if ( nearest_u != nil ) {
if ( wcs_mode == "tws-auto" and nearest_u.get_display() and nearest_u.deviation > l_az_fld and nearest_u.deviation < r_az_fld ) {
var u_target = nearest_u.type ~ "[" ~ nearest_u.index ~ "]";
var our_pitch = OurPitch.getValue();
var u_dev_rad = (90 - nearest_u.get_deviation(our_true_heading)) * D2R;
var u_elev_rad = (90 - nearest_u.get_total_elevation(our_pitch)) * D2R;
# Deviation length on the HUD (at level flight), 0.6686m = distance eye <-> virtual HUD screen.
var h_dev = 0.6686 / ( math.sin(u_dev_rad) / math.cos(u_dev_rad) );
var v_dev = 0.6686 / ( math.sin(u_elev_rad) / math.cos(u_elev_rad) );
# Angle between HUD center/top <-> HUD center/target position.
# -90° left, 0° up, 90° right, +/- 180° down.
var dev_deg = math.atan2( h_dev, v_dev ) * R2D;
# Correction with own a/c roll.
var combined_dev_deg = dev_deg - OurRoll.getValue();
# Lenght HUD center <-> target pos on the HUD:
var combined_dev_length = math.sqrt((h_dev*h_dev)+(v_dev*v_dev));
# Clamp so the target follow the HUD limits.
if ( combined_dev_length > hud_radius ) {
combined_dev_length = hud_radius;
Clamp_Blinker.blink();
} else {
Clamp_Blinker.cont();
}
# Clamp closure rate from -200 to +1,000 Kts.
var cr = nearest_u.ClosureRate.getValue();
if (cr < -200) { cr = 200 } elsif (cr > 1000) { cr = 1000 }
HudTgtClosureRate.setValue(cr);
HudTgtTDeg.setValue(combined_dev_deg);
HudTgtTDev.setValue(combined_dev_length);
HudTgtHDisplay.setBoolValue(1);
HudTgt.setValue(u_target);
return;
}
}
HudTgtClosureRate.setValue(0);
HudTgtTDeg.setValue(0);
HudTgtTDev.setValue(0);
HudTgtHDisplay.setBoolValue(0);
}
# HUD clamped target blinker
Clamp_Blinker = aircraft.light.new("instrumentation/radar2/hud/target-clamped-blinker", [0.1, 0.1]);
setprop("instrumentation/radar2/hud/target-clamped-blinker/enabled", 1);
# ECM: Radar Warning Receiver
rwr = func(u) {
var u_name = radardist.get_aircraft_name(u.string);
var u_maxrange = radardist.my_maxrange(u_name); # in kilometer, 0 is unknown or no radar.
var horizon = u.get_horizon( our_alt );
var u_rng = u.get_range();
var u_carrier = u.check_carrier_type();
if ( u.get_rdr_standby() == 0 and u_maxrange > 0 and u_rng < horizon ) {
# Test if we are in its radar field (hard coded 74°) or if we have a MPcarrier.
# Compute the signal strength.
var our_deviation_deg = deviation_normdeg(u.get_heading(), u.get_reciprocal_bearing());
if ( our_deviation_deg < 0 ) { our_deviation_deg *= -1 }
if ( our_deviation_deg < 37 or u_carrier == 1 ) {
u_ecm_signal = (((-our_deviation_deg/20)+2.5)*(!u_carrier )) + (-u_rng/20) + 2.6 + (u_carrier*1.8);
u_ecm_type_num = radardist.get_ecm_type_num(u_name);
}
} else {
u_ecm_signal = 0;
}
# Compute global threat situation for undiscriminant warning lights
# and discrete (normalized) definition of threat strength.
if ( u_ecm_signal > 1 and u_ecm_signal < 3 ) {
EcmAlert1.setBoolValue(1);
ecm_alert1 = 1;
u_ecm_signal_norm = 2;
} elsif ( u_ecm_signal >= 3 ) {
EcmAlert2.setBoolValue(1);
ecm_alert2 = 1;
u_ecm_signal_norm = 1;
}
u.EcmSignal.setValue(u_ecm_signal);
u.EcmSignalNorm.setIntValue(u_ecm_signal_norm);
u.EcmTypeNum.setIntValue(u_ecm_type_num);
}
# Utilities.
var deviation_normdeg = func(our_heading, target_bearing) {
var dev_norm = our_heading - target_bearing;
while (dev_norm < -180) dev_norm += 360;
while (dev_norm > 180) dev_norm -= 360;
return(dev_norm);
}
var rounding1000 = func(n) {
var a = int( n / 1000 );
var l = ( a + 0.5 ) * 1000;
n = (n >= l) ? ((a + 1) * 1000) : (a * 1000);
return( n );
}
# Controls
var radar_range_control = func(n) {
# FIXME: Radar props should provide their own ranges instead of being hardcoded.
# 5, 10, 20, 50, 100, 200
var range_radar = RangeSelected.getValue();
if ( n == 1 ) {
if ( range_radar == 5 ) {
range_radar = 10;
} elsif ( range_radar == 10 ) {
range_radar = 20;
} elsif ( range_radar == 20 ) {
range_radar = 50;
} elsif ( range_radar == 50 ) {
range_radar = 100;
} else {
range_radar = 150;
}
} else {
if ( range_radar == 150 ) {
range_radar = 100;
} elsif ( range_radar == 100 ) {
range_radar = 50;
} elsif ( range_radar == 50 ) {
range_radar = 20;
} elsif ( range_radar == 20 ) {
range_radar = 10;
} else {
range_radar = 5;
}
}
RangeSelected.setValue(range_radar);
}
radar_mode_sel = func(mode) {
# FIXME: Modes props should provide their own data instead of being hardcoded.
foreach (var n; props.globals.getNode("instrumentation/radar/mode").getChildren()) {
n.setBoolValue(n.getName() == mode);
wcs_mode = mode;
}
if ( wcs_mode == "rws" ) {
AzField.setValue(120);
swp_diplay_width = 0.0844;
} else {
AzField.setValue(60);
swp_diplay_width = 0.0422;
}
}
radar_mode_toggle = func() {
# FIXME: Modes props should provide their own data instead of being hardcoded.
# Toggles between the available modes.
foreach (var n; props.globals.getNode("instrumentation/radar/mode").getChildren()) {
if ( n.getBoolValue() ) { wcs_mode = n.getName() }
}
if ( wcs_mode == "rws" ) {
setprop("instrumentation/radar/mode/rws", 0);
setprop("instrumentation/radar/mode/tws-auto", 1);
wcs_mode = "tws-auto";
AzField.setValue(60);
swp_diplay_width = 0.0422;
} elsif ( wcs_mode == "tws-auto" ) {
setprop("instrumentation/radar/mode/tws-auto", 0);
setprop("instrumentation/radar/mode/rws", 1);
wcs_mode = "pulse-srch";
AzField.setValue(120);
swp_diplay_width = 0.0844;
}
}
setlistener("sim/signals/fdm-initialized", init);
# Target class
var Target = {
new : func (c) {
var obj = { parents : [Target]};
obj.RdrProp = c.getNode("radar");
obj.Heading = c.getNode("orientation/true-heading-deg");
obj.Alt = c.getNode("position/altitude-ft");
obj.AcType = c.getNode("sim/model/ac-type");
obj.type = c.getName();
obj.index = c.getIndex();
obj.string = "ai/models/" ~ obj.type ~ "[" ~ obj.index ~ "]";
obj.shortstring = obj.type ~ "[" ~ obj.index ~ "]";
obj.InstrTgts = props.globals.getNode("instrumentation/radar2/targets", 1);
obj.TgtsFiles = obj.InstrTgts.getNode(obj.shortstring, 1);
obj.Range = obj.RdrProp.getNode("range-nm");
obj.Bearing = obj.RdrProp.getNode("bearing-deg");
obj.Elevation = obj.RdrProp.getNode("elevation-deg");
obj.BBearing = obj.TgtsFiles.getNode("bearing-deg", 1);
obj.BHeading = obj.TgtsFiles.getNode("true-heading-deg", 1);
obj.RangeScore = obj.TgtsFiles.getNode("range-score", 1);
obj.RelBearing = obj.TgtsFiles.getNode("ddd-relative-bearing", 1);
obj.Carrier = obj.TgtsFiles.getNode("carrier", 1);
obj.EcmSignal = obj.TgtsFiles.getNode("ecm-signal", 1);
obj.EcmSignalNorm = obj.TgtsFiles.getNode("ecm-signal-norm", 1);
obj.EcmTypeNum = obj.TgtsFiles.getNode("ecm_type_num", 1);
obj.Display = obj.TgtsFiles.getNode("display", 1);
obj.Fading = obj.TgtsFiles.getNode("ddd-echo-fading", 1);
obj.DddDrawRangeNm = obj.TgtsFiles.getNode("ddd-draw-range-nm", 1);
obj.TidDrawRangeNm = obj.TgtsFiles.getNode("tid-draw-range-nm", 1);
obj.RoundedAlt = obj.TgtsFiles.getNode("rounded-alt-ft", 1);
obj.TimeLast = obj.TgtsFiles.getNode("closure-last-time", 1);
obj.RangeLast = obj.TgtsFiles.getNode("closure-last-range-nm", 1);
obj.ClosureRate = obj.TgtsFiles.getNode("closure-rate-kts", 1);
obj.TimeLast.setValue(ElapsedSec.getValue());
if ( obj.Range != nil) {
obj.RangeLast.setValue(obj.Range.getValue());
} else {
obj.RangeLast.setValue(0);
}
obj.RadarStandby = c.getNode("sim/multiplay/generic/int[2]");
obj.deviation = nil;
return obj;
},
get_heading : func {
var n = me.Heading.getValue();
me.BHeading.setValue(n);
return n;
},
get_bearing : func {
var n = me.Bearing.getValue();
me.BBearing.setValue(n);
return n;
},
set_relative_bearing : func(n) {
me.RelBearing.setValue(n);
},
get_reciprocal_bearing : func {
return geo.normdeg(me.get_bearing() + 180);
},
get_deviation : func(true_heading_ref) {
me.deviation = - deviation_normdeg(true_heading_ref, me.get_bearing());
return me.deviation;
},
get_altitude : func {
return me.Alt.getValue();
},
get_total_elevation : func(own_pitch) {
me.deviation = - deviation_normdeg(own_pitch, me.Elevation.getValue());
return me.deviation;
},
get_range : func {
return me.Range.getValue();
},
get_horizon : func(own_alt) {
var tgt_alt = me.get_altitude();
if ( tgt_alt != nil ) {
if ( own_alt < 0 ) { own_alt = 0.001 }
if ( debug.isnan(tgt_alt)) {
return(0);
}
if ( tgt_alt < 0 ) { tgt_alt = 0.001 }
return radardist.radar_horizon( own_alt, tgt_alt );
} else {
return(0);
}
},
check_carrier_type : func {
var type = "none";
var carrier = 0;
if ( me.AcType != nil ) { type = me.AcType.getValue() }
if ( type == "MP-Nimitz" or type == "MP-Eisenhower" or type == "MP-Vinson") { carrier = 1 }
# This works only after the mp-carrier model has been loaded. Before that it is seen like a common aircraft.
me.Carrier.setBoolValue(carrier);
return carrier;
},
get_rdr_standby : func {
var s = 0;
if ( me.RadarStandby != nil ) {
s = me.RadarStandby.getValue();
if (s == nil) { s = 0 } elsif (s != 1) { s = 0 }
}
return s;
},
get_display : func() {
return me.Display.getValue();
},
set_display : func(n) {
me.Display.setBoolValue(n);
},
get_fading : func() {
var fading = me.Fading.getValue();
if ( fading == nil ) { fading = 0 }
return fading;
},
set_fading : func(n) {
me.Fading.setValue(n);
},
set_ddd_draw_range_nm : func(n) {
me.DddDrawRangeNm.setValue(n);
},
set_hud_draw_horiz_dev : func(n) {
me.HudDrawHorizDev.setValue(n);
},
set_tid_draw_range_nm : func(n) {
me.TidDrawRangeNm.setValue(n);
},
set_rounded_alt : func(n) {
me.RoundedAlt.setValue(n);
},
get_closure_rate : func() {
var dt = ElapsedSec.getValue() - me.TimeLast.getValue();
var rng = me.Range.getValue();
var t_distance = me.RangeLast.getValue() - rng;
var cr = t_distance/dt*3600;
me.ClosureRate.setValue(cr);
me.RangeLast.setValue(rng);
return(cr);
},
list : [],
};