1
0
Fork 0
fgdata/Shaders/HDR/water.frag

218 lines
7.4 KiB
GLSL
Raw Normal View History

2021-08-25 02:17:09 +00:00
#version 330 core
layout(location = 0) out vec4 outGBuffer0;
layout(location = 1) out vec4 outGBuffer1;
2021-08-25 02:17:09 +00:00
in vec4 waterTex1;
in vec4 waterTex2;
in mat3 TBN;
in vec3 ecPosition;
in vec2 TopoUV;
uniform sampler2D perlin_normalmap;
uniform sampler2D water_dudvmap;
uniform sampler2D water_normalmap;
uniform sampler2D water_colormap;
uniform float WindE;
uniform float WindN;
uniform float WaveFreq;
uniform float WaveAmp;
uniform float WaveSharp;
uniform float WaveAngle;
uniform float WaveFactor;
uniform float WaveDAngle;
uniform float osg_SimulationTime;
uniform vec3 fg_SunDirection;
// normal_encoding.glsl
vec2 encode_normal(vec3 n);
// color.glsl
vec3 eotf_inverse_sRGB(vec3 srgb);
2021-08-25 02:17:09 +00:00
void rotationmatrix(float angle, out mat4 rotmat)
{
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
sin( angle ), cos( angle ), 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
// wave functions ///////////////////////
struct Wave {
2021-08-25 02:25:09 +00:00
float freq; // 2*PI / wavelength
float amp; // amplitude
float phase; // speed * 2*PI / wavelength
vec2 dir;
2021-08-25 02:17:09 +00:00
};
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
float evaluateWave(in Wave w, vec2 pos, float t)
{
2021-08-25 02:25:09 +00:00
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
2021-08-25 02:17:09 +00:00
}
// derivative of wave function
float evaluateWaveDeriv(Wave w, vec2 pos, float t)
{
2021-08-25 02:25:09 +00:00
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
2021-08-25 02:17:09 +00:00
}
// sharp wave functions
float evaluateWaveSharp(Wave w, vec2 pos, float t, float k)
{
2021-08-25 02:25:09 +00:00
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
2021-08-25 02:17:09 +00:00
}
float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k)
{
2021-08-25 02:25:09 +00:00
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
2021-08-25 02:17:09 +00:00
}
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy)
{
2021-08-25 02:25:09 +00:00
mat4 RotationMatrix;
float deriv;
vec4 P = waterTex1 * 1024;
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
P *= RotationMatrix;
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
ddx = deriv * wave0.dir.x;
ddy = deriv * wave0.dir.y;
P.y += evaluateWave(wave1, P.xz, osg_SimulationTime);
deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime);
ddx += deriv * wave1.dir.x;
ddy += deriv * wave1.dir.y;
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
ddx += deriv * wave2.dir.x;
ddy += deriv * wave2.dir.y;
P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
ddx += deriv * wave3.dir.x;
ddy += deriv * wave3.dir.y;
2021-08-25 02:17:09 +00:00
}
void main()
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
mat4 RotationMatrix;
float windEffect = sqrt(WindE*WindE + WindN*WindN) * 0.6;
float windScale = 15.0/(3.0 + windEffect);
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect);
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect);
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
mixFactor = clamp(mixFactor, 0.3, 0.8);
2021-08-25 02:25:09 +00:00
// sine waves
float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3;
float angle;
ddx = 0.0, ddy = 0.0;
ddx1 = 0.0, ddy1 = 0.0;
ddx2 = 0.0, ddy2 = 0.0;
ddx3 = 0.0, ddy3 = 0.0;
2021-08-25 02:17:09 +00:00
2021-08-25 02:25:09 +00:00
// there's no need to do wave patterns or foam for pixels which are so
2021-08-25 02:17:09 +00:00
// far away that we can't actually see them
2021-08-25 02:25:09 +00:00
// we only need detail in the near zone or where the sun reflection is
2021-08-25 02:17:09 +00:00
float dist = length(ecPosition);
bool detailed = (dist < 15000.0)
|| (dot(fg_SunDirection, normalize(ecPosition)) >= 0.7);
if (detailed) {
angle = 0.0;
wave0.freq = WaveFreq ;
wave0.amp = WaveAmp;
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 45;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = WaveAmp * 1.25;
wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle)));
angle += 30;
wave2.freq = WaveFreq * 3.5;
wave2.amp = WaveAmp * 0.75;
wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 50;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = WaveAmp * 0.75;
wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle)));
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy);
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1);
//reset the waves
angle = 0.0;
float waveamp = WaveAmp * 0.75;
wave0.freq = WaveFreq ;
wave0.amp = waveamp;
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 20;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = waveamp * 1.25;
wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle)));
angle += 35;
wave2.freq = WaveFreq * 3.5;
wave2.amp = waveamp * 0.75;
wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 45;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = waveamp * 0.75;
wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle)));
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2);
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3);
2021-08-25 02:25:09 +00:00
}
2021-08-25 02:17:09 +00:00
vec4 disdis = texture(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0;
2021-08-25 02:25:09 +00:00
vec3 N0 = vec3(texture(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0);
vec3 N1 = vec3(texture(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0);
2021-08-25 02:17:09 +00:00
2021-08-25 02:25:09 +00:00
N0 += vec3(texture(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0);
N1 += vec3(texture(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0);
2021-08-25 02:17:09 +00:00
2021-08-25 02:25:09 +00:00
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
N0 += vec3(texture(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
N1 += vec3(texture(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
2021-08-25 02:17:09 +00:00
2021-08-25 02:25:09 +00:00
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
N0 += vec3(texture(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0);
N1 += vec3(texture(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0);
2021-08-25 02:17:09 +00:00
N0 *= windEffect_low;
N1 *= windEffect_low;
N0.r += (ddx + ddx1 + ddx2 + ddx3);
2021-08-25 02:25:09 +00:00
N0.g += (ddy + ddy1 + ddy2 + ddy3);
2021-08-25 02:17:09 +00:00
vec3 N = normalize(mix(N0, N1, mixFactor) * waveRoughness);
vec3 floorColor = eotf_inverse_sRGB(texture(water_colormap, TopoUV).rgb);
outGBuffer0.rg = encode_normal(TBN * N);
outGBuffer1.rgb = floorColor;
2021-08-25 02:17:09 +00:00
}